fss-mini-rag-github/docs/FALLBACK_SETUP.md
BobAi a96ddba3c9 MAJOR: Remove all Claude references and rename to Mini-RAG
Complete rebrand to eliminate any Claude/Anthropic references:

Directory Changes:
- claude_rag/ → mini_rag/ (preserving git history)

Content Changes:
- Replaced 930+ Claude references across 40+ files
- Updated all imports: from claude_rag → from mini_rag
- Updated all file paths: .claude-rag → .mini-rag
- Updated documentation and comments
- Updated configuration files and examples

Testing Changes:
- All tests updated to use mini_rag imports
- Integration tests verify new module structure

This ensures complete independence from Claude/Anthropic
branding while maintaining all functionality and git history.
2025-08-12 19:21:30 +10:00

62 lines
1.9 KiB
Markdown

# RAG System - Hybrid Mode Setup
This RAG system can operate in three modes:
## 🚀 **Mode 1: Ollama Only (Recommended - Lightweight)**
```bash
pip install -r requirements-light.txt
# Requires: ollama serve running with nomic-embed-text model
```
- **Size**: ~426MB total
- **Performance**: Fastest (leverages Ollama)
- **Network**: Uses local Ollama server
## 🔄 **Mode 2: Hybrid (Best of Both Worlds)**
```bash
pip install -r requirements-full.txt
# Works with OR without Ollama
```
- **Size**: ~3GB total (includes ML fallback)
- **Resilience**: Automatic fallback if Ollama unavailable
- **Performance**: Ollama speed when available, ML fallback when needed
## 🛡️ **Mode 3: ML Only (Maximum Compatibility)**
```bash
pip install -r requirements-full.txt
# Disable Ollama fallback in config
```
- **Size**: ~3GB total
- **Compatibility**: Works anywhere, no external dependencies
- **Use case**: Offline environments, embedded systems
## 🔧 **Configuration**
Edit `.mini-rag/config.json` in your project:
```json
{
"embedding": {
"provider": "hybrid", // "hybrid", "ollama", "fallback"
"model": "nomic-embed-text:latest",
"base_url": "http://localhost:11434",
"enable_fallback": true // Set to false to disable ML fallback
}
}
```
## 📊 **Status Check**
```python
from mini_rag.ollama_embeddings import OllamaEmbedder
embedder = OllamaEmbedder()
status = embedder.get_status()
print(f"Mode: {status['mode']}")
print(f"Ollama: {'✅' if status['ollama_available'] else '❌'}")
print(f"ML Fallback: {'✅' if status['fallback_available'] else '❌'}")
```
## 🎯 **Automatic Behavior**
1. **Try Ollama first** - fastest and most efficient
2. **Fall back to ML** - if Ollama unavailable and ML dependencies installed
3. **Use hash fallback** - deterministic embeddings as last resort
The system automatically detects what's available and uses the best option!