email-sorter/docs/SESSION_HANDOVER_20251128.md
FSSCoding 8f25e30f52 Rewrite CLAUDE.md and clean project structure
- Rewrote CLAUDE.md with comprehensive development guide
- Archived 20 old docs to docs/archive/
- Added PROJECT_ROADMAP_2025.md with research learnings
- Added CLASSIFICATION_METHODS_COMPARISON.md
- Added SESSION_HANDOVER_20251128.md
- Added tools for analysis (brett_gmail/microsoft analyzers)
- Updated .gitignore for archive folders
- Config changes for local vLLM endpoint
2025-11-28 13:07:27 +11:00

3.8 KiB

Session Handover Report - Email Sorter

Date: 2025-11-28 Session ID: eb549838-a153-48d1-ae5d-891e0e83108f


What Was Done This Session

1. Classified 801 emails from brett-gmail using three methods:

Method Accuracy Time Output Location
ML-Only 54.9% ~5 sec /home/bob/Documents/Email Manager/emails/brett-gm-md/
ML+LLM 93.3% ~3.5 min /home/bob/Documents/Email Manager/emails/brett-gm-llm/
Manual Agent 99.8% ~25 min Same as ML-only + analysis files

2. Created/Modified Files

New Files:

  • tools/generate_html_report.py - HTML report generator
  • tools/brett_gmail_analyzer.py - Custom dataset analyzer
  • data/brett_gmail_analysis.json - Analysis output
  • docs/REPORT_FORMAT.md - Report system documentation
  • docs/CLASSIFICATION_METHODS_COMPARISON.md - Method comparison
  • docs/PROJECT_ROADMAP_2025.md - Full roadmap and learnings
  • /home/bob/Documents/Email Manager/emails/brett-gm-md/BRETT_GMAIL_ANALYSIS_REPORT.md - Analysis report
  • /home/bob/Documents/Email Manager/emails/brett-gm-md/report.html - HTML report (ML-only)
  • /home/bob/Documents/Email Manager/emails/brett-gm-llm/report.html - HTML report (ML+LLM)

Modified Files:

  • src/cli.py - Added --force-ml flag, enriched results.json with email metadata
  • src/llm/openai_compat.py - Removed API key requirement for local vLLM
  • config/default_config.yaml - Changed LLM to openai provider on localhost:11433

3. Key Configuration Changes

# config/default_config.yaml - LLM now uses vLLM endpoint
llm:
  provider: "openai"
  openai:
    base_url: "http://localhost:11433/v1"
    api_key: "not-needed"
    classification_model: "qwen3-coder-30b"

Key Findings

  1. ML pipeline overkill for <5000 emails - Agent analysis gives better accuracy in similar time
  2. Sender domain is strongest signal - Top 5 senders = 47.5% of emails
  3. Categories should serve downstream routing - Not human labels, but processing decisions
  4. Risk-based accuracy - Personal emails need high accuracy, junk can tolerate errors
  5. This tool = triage - Sorts into buckets for other specialized tools

Project Scope (Agreed with User)

Email Sorter IS:

  • Bulk classification/triage tool
  • Router to downstream specialized tools
  • Part of larger email processing ecosystem

Email Sorter IS NOT:

  • Complete email management solution
  • Spam filter (trust Gmail/Outlook)
  • Final destination for emails

Size Method
<500 Agent-only
500-5000 Agent pre-scan + ML
>5000 ML pipeline

Background Processes

There are stale background bash processes (f8678e, 0a3549, 0d150e) from classification runs. These completed successfully and can be ignored.


What Needs Doing Next

  1. Review docs/ - All learnings are in PROJECT_ROADMAP_2025.md
  2. Phase 1 development - Dataset size routing, sender-first classification
  3. Agent pre-scan module - 10-15 min discovery phase before ML

User Preferences (from CLAUDE.md)

  • NO emojis in commits
  • NO "Generated with Claude" attribution
  • Use tools (Read/Edit/Grep) not bash commands for file ops
  • Virtual environment required for Python
  • TTS available via fss-speak (single line messages only, no newlines)

Quick Start for Next Agent

cd /MASTERFOLDER/Tools/email-sorter
source venv/bin/activate

# Read the roadmap
cat docs/PROJECT_ROADMAP_2025.md

# Run classification
python -m src.cli run --source local \
  --directory "/path/to/emails" \
  --output "/path/to/output" \
  --force-ml --llm-provider openai

# Generate HTML report
python tools/generate_html_report.py --input /path/to/results.json

Session ended: 2025-11-28 ~03:30 AEDT