email-sorter/BATCH_LLM_QUICKSTART.md
FSSCoding 10862583ad Add batch LLM classifier tool with prompt caching optimization
- Created standalone batch_llm_classifier.py for custom email queries
- Optimized all LLM prompts for caching (static instructions first, variables last)
- Configured rtx3090 vLLM endpoint (qwen3-coder-30b)
- Tested batch_size=4 optimal (100% success, 4.65 req/sec)
- Added comprehensive documentation (tools/README.md, BATCH_LLM_QUICKSTART.md)

Tool is completely separate from main ML pipeline - no interference.
Prerequisite: vLLM server must be running at rtx3090.bobai.com.au
2025-11-14 16:01:57 +11:00

146 lines
2.8 KiB
Markdown

# Batch LLM Classifier - Quick Start
## Prerequisite Check
```bash
python tools/batch_llm_classifier.py check
```
Expected: `✓ vLLM server is running and ready`
If not running: Start vLLM server at rtx3090.bobai.com.au first
---
## Basic Usage
```bash
python tools/batch_llm_classifier.py ask \
--source enron \
--limit 50 \
--question "YOUR QUESTION HERE" \
--output results.txt
```
---
## Example Questions
### Find Urgent Emails
```bash
--question "Is this email urgent or time-sensitive? Answer yes/no and explain."
```
### Extract Financial Data
```bash
--question "List any dollar amounts, budgets, or financial numbers in this email."
```
### Meeting Detection
```bash
--question "Does this email mention a meeting? If yes, extract date/time/location."
```
### Sentiment Analysis
```bash
--question "What is the tone? Professional/Casual/Urgent/Frustrated? Explain."
```
### Custom Classification
```bash
--question "Should this email be archived or kept active? Why?"
```
---
## Performance
- **Throughput**: 4.65 requests/sec
- **Batch size**: 4 (proper batch pooling)
- **Reliability**: 100% success rate
- **Example**: 500 requests in 108 seconds
---
## When To Use
**Use Batch LLM for:**
- Custom questions on 50-500 emails
- One-off exploratory analysis
- Flexible classification criteria
- Data extraction tasks
**Use RAG instead for:**
- Searching 10k+ email corpus
- Semantic topic search
- Multi-document reasoning
**Use Main ML Pipeline for:**
- Regular ongoing classification
- High-volume processing (10k+ emails)
- Consistent categories
- Maximum speed
---
## Quick Test
```bash
# Check server
python tools/batch_llm_classifier.py check
# Process 10 emails
python tools/batch_llm_classifier.py ask \
--source enron \
--limit 10 \
--question "Summarize this email in one sentence." \
--output test.txt
# Check results
cat test.txt
```
---
## Files Created
- `tools/batch_llm_classifier.py` - Main tool (executable)
- `tools/README.md` - Full documentation
- `test_llm_concurrent.py` - Performance testing script (root)
**No files in `src/` were modified - existing ML pipeline untouched**
---
## Configuration
Edit `VLLM_CONFIG` in `batch_llm_classifier.py`:
```python
VLLM_CONFIG = {
'base_url': 'https://rtx3090.bobai.com.au/v1',
'api_key': 'rtx3090_foxadmin_10_8034ecb47841f45ba1d5f3f5d875c092',
'model': 'qwen3-coder-30b',
'batch_size': 4, # Don't increase - causes 503 errors
}
```
---
## Troubleshooting
**Server not available:**
```bash
curl https://rtx3090.bobai.com.au/v1/models -H "Authorization: Bearer rtx3090_..."
```
**503 errors:**
Lower `batch_size` to 2 in config (currently optimal is 4)
**Slow processing:**
Check vLLM server load - may be handling other requests
---
**Done!** Ready to ask custom questions across email batches.