Fss-Rag-Mini/GET_STARTED.md
BobAi 4166d0a362 Initial release: FSS-Mini-RAG - Lightweight semantic code search system
🎯 Complete transformation from 5.9GB bloated system to 70MB optimized solution

 Key Features:
- Hybrid embedding system (Ollama + ML fallback + hash backup)
- Intelligent chunking with language-aware parsing
- Semantic + BM25 hybrid search with rich context
- Zero-config portable design with graceful degradation
- Beautiful TUI for beginners + powerful CLI for experts
- Comprehensive documentation with 8+ Mermaid diagrams
- Professional animated demo (183KB optimized GIF)

🏗️ Architecture Highlights:
- LanceDB vector storage with streaming indexing
- Smart file tracking (size/mtime) to avoid expensive rehashing
- Progressive chunking: Markdown headers → Python functions → fixed-size
- Quality filtering: 200+ chars, 20+ words, 30% alphanumeric content
- Concurrent batch processing with error recovery

📦 Package Contents:
- Core engine: claude_rag/ (11 modules, 2,847 lines)
- Entry points: rag-mini (unified), rag-tui (beginner interface)
- Documentation: README + 6 guides with visual diagrams
- Assets: 3D icon, optimized demo GIF, recording tools
- Tests: 8 comprehensive integration and validation tests
- Examples: Usage patterns, config templates, dependency analysis

🎥 Demo System:
- Scripted demonstration showing 12 files → 58 chunks indexing
- Semantic search with multi-line result previews
- Complete workflow from TUI startup to CLI mastery
- Professional recording pipeline with asciinema + GIF conversion

🛡️ Security & Quality:
- Complete .gitignore with personal data protection
- Dependency optimization (removed python-dotenv)
- Code quality validation and educational test suite
- Agent-reviewed architecture and documentation

Ready for production use - copy folder, run ./rag-mini, start searching\!
2025-08-12 16:38:28 +10:00

83 lines
2.2 KiB
Markdown

# 🚀 FSS-Mini-RAG: Get Started in 2 Minutes
## Step 1: Install Everything
```bash
./install_mini_rag.sh
```
**That's it!** The installer handles everything automatically:
- Checks Python installation
- Sets up virtual environment
- Guides you through Ollama setup
- Installs dependencies
- Tests everything works
## Step 2: Use It
### TUI - Interactive Interface (Easiest)
```bash
./rag-tui
```
**Perfect for beginners!** Menu-driven interface that:
- Shows you CLI commands as you use it
- Guides you through setup and configuration
- No need to memorize commands
### Quick Commands (Beginner-Friendly)
```bash
# Index any project
./run_mini_rag.sh index ~/my-project
# Search your code
./run_mini_rag.sh search ~/my-project "authentication logic"
# Check what's indexed
./run_mini_rag.sh status ~/my-project
```
### Full Commands (More Options)
```bash
# Basic indexing and search
./rag-mini index /path/to/project
./rag-mini search /path/to/project "database connection"
# Enhanced search with smart features
./rag-mini-enhanced search /path/to/project "UserManager"
./rag-mini-enhanced similar /path/to/project "def validate_input"
```
## What You Get
**Semantic Search**: Instead of exact text matching, finds code by meaning:
- Search "user login" → finds authentication functions, session management, password validation
- Search "database queries" → finds SQL, ORM code, connection handling
- Search "error handling" → finds try/catch blocks, error classes, logging
## Installation Options
The installer offers two choices:
**Light Installation (Recommended)**:
- Uses Ollama for high-quality embeddings
- Requires Ollama installed (installer guides you)
- Small download (~50MB)
**Full Installation**:
- Includes ML fallback models
- Works without Ollama
- Large download (~2-3GB)
## Troubleshooting
**"Python not found"**: Install Python 3.8+ from python.org
**"Ollama not found"**: Visit https://ollama.ai/download
**"Import errors"**: Re-run `./install_mini_rag.sh`
## Next Steps
- **Technical Details**: Read `README.md`
- **Step-by-Step Guide**: Read `docs/GETTING_STARTED.md`
- **Examples**: Check `examples/` directory
- **Test It**: Run on this project: `./run_mini_rag.sh index .`
---
**Questions?** Everything is documented in the README.md file.