fss-mini-rag-github/tests/01_basic_integration_test.py
BobAi 4166d0a362 Initial release: FSS-Mini-RAG - Lightweight semantic code search system
🎯 Complete transformation from 5.9GB bloated system to 70MB optimized solution

 Key Features:
- Hybrid embedding system (Ollama + ML fallback + hash backup)
- Intelligent chunking with language-aware parsing
- Semantic + BM25 hybrid search with rich context
- Zero-config portable design with graceful degradation
- Beautiful TUI for beginners + powerful CLI for experts
- Comprehensive documentation with 8+ Mermaid diagrams
- Professional animated demo (183KB optimized GIF)

🏗️ Architecture Highlights:
- LanceDB vector storage with streaming indexing
- Smart file tracking (size/mtime) to avoid expensive rehashing
- Progressive chunking: Markdown headers → Python functions → fixed-size
- Quality filtering: 200+ chars, 20+ words, 30% alphanumeric content
- Concurrent batch processing with error recovery

📦 Package Contents:
- Core engine: claude_rag/ (11 modules, 2,847 lines)
- Entry points: rag-mini (unified), rag-tui (beginner interface)
- Documentation: README + 6 guides with visual diagrams
- Assets: 3D icon, optimized demo GIF, recording tools
- Tests: 8 comprehensive integration and validation tests
- Examples: Usage patterns, config templates, dependency analysis

🎥 Demo System:
- Scripted demonstration showing 12 files → 58 chunks indexing
- Semantic search with multi-line result previews
- Complete workflow from TUI startup to CLI mastery
- Professional recording pipeline with asciinema + GIF conversion

🛡️ Security & Quality:
- Complete .gitignore with personal data protection
- Dependency optimization (removed python-dotenv)
- Code quality validation and educational test suite
- Agent-reviewed architecture and documentation

Ready for production use - copy folder, run ./rag-mini, start searching\!
2025-08-12 16:38:28 +10:00

255 lines
8.9 KiB
Python

"""
Comprehensive demo of the RAG system showing all integrated features.
"""
import os
import sys
import tempfile
from pathlib import Path
# Fix Windows encoding
if sys.platform == 'win32':
os.environ['PYTHONUTF8'] = '1'
sys.stdout.reconfigure(encoding='utf-8')
from claude_rag.chunker import CodeChunker
from claude_rag.indexer import ProjectIndexer
from claude_rag.search import CodeSearcher
from claude_rag.embeddings import CodeEmbedder
def main():
print("=" * 60)
print("RAG System Integration Demo")
print("=" * 60)
with tempfile.TemporaryDirectory() as tmpdir:
project_path = Path(tmpdir)
# Create sample project files
print("\n1. Creating sample project files...")
# Main calculator module
(project_path / "calculator.py").write_text('''"""
Advanced calculator module with various mathematical operations.
"""
import math
from typing import List, Union
class BasicCalculator:
"""Basic calculator with fundamental operations."""
def __init__(self):
"""Initialize calculator with result history."""
self.history = []
self.last_result = 0
def add(self, a: float, b: float) -> float:
"""Add two numbers and store result."""
result = a + b
self.history.append(f"{a} + {b} = {result}")
self.last_result = result
return result
def subtract(self, a: float, b: float) -> float:
"""Subtract b from a."""
result = a - b
self.history.append(f"{a} - {b} = {result}")
self.last_result = result
return result
def multiply(self, a: float, b: float) -> float:
"""Multiply two numbers."""
result = a * b
self.history.append(f"{a} * {b} = {result}")
self.last_result = result
return result
def divide(self, a: float, b: float) -> float:
"""Divide a by b with zero check."""
if b == 0:
raise ValueError("Cannot divide by zero")
result = a / b
self.history.append(f"{a} / {b} = {result}")
self.last_result = result
return result
class ScientificCalculator(BasicCalculator):
"""Scientific calculator extending basic operations."""
def power(self, base: float, exponent: float) -> float:
"""Calculate base raised to exponent."""
result = math.pow(base, exponent)
self.history.append(f"{base} ^ {exponent} = {result}")
self.last_result = result
return result
def sqrt(self, n: float) -> float:
"""Calculate square root."""
if n < 0:
raise ValueError("Cannot take square root of negative number")
result = math.sqrt(n)
self.history.append(f"sqrt({n}) = {result}")
self.last_result = result
return result
def logarithm(self, n: float, base: float = 10) -> float:
"""Calculate logarithm with specified base."""
result = math.log(n, base)
self.history.append(f"log_{base}({n}) = {result}")
self.last_result = result
return result
def calculate_mean(numbers: List[float]) -> float:
"""Calculate arithmetic mean of a list of numbers."""
if not numbers:
return 0.0
return sum(numbers) / len(numbers)
def calculate_median(numbers: List[float]) -> float:
"""Calculate median of a list of numbers."""
if not numbers:
return 0.0
sorted_nums = sorted(numbers)
n = len(sorted_nums)
if n % 2 == 0:
return (sorted_nums[n//2-1] + sorted_nums[n//2]) / 2
return sorted_nums[n//2]
def calculate_mode(numbers: List[float]) -> float:
"""Calculate mode (most frequent value)."""
if not numbers:
return 0.0
frequency = {}
for num in numbers:
frequency[num] = frequency.get(num, 0) + 1
mode = max(frequency.keys(), key=frequency.get)
return mode
''')
# Test file for the calculator
(project_path / "test_calculator.py").write_text('''"""
Unit tests for calculator module.
"""
import unittest
from calculator import BasicCalculator, ScientificCalculator, calculate_mean
class TestBasicCalculator(unittest.TestCase):
"""Test cases for BasicCalculator."""
def setUp(self):
"""Set up test calculator."""
self.calc = BasicCalculator()
def test_addition(self):
"""Test addition operation."""
result = self.calc.add(5, 3)
self.assertEqual(result, 8)
self.assertEqual(self.calc.last_result, 8)
def test_division_by_zero(self):
"""Test division by zero raises error."""
with self.assertRaises(ValueError):
self.calc.divide(10, 0)
class TestStatistics(unittest.TestCase):
"""Test statistical functions."""
def test_mean(self):
"""Test mean calculation."""
numbers = [1, 2, 3, 4, 5]
self.assertEqual(calculate_mean(numbers), 3.0)
def test_empty_list(self):
"""Test mean of empty list."""
self.assertEqual(calculate_mean([]), 0.0)
if __name__ == "__main__":
unittest.main()
''')
print(" Created 2 Python files")
# 2. Index the project
print("\n2. Indexing project with intelligent chunking...")
# Use realistic chunk size
chunker = CodeChunker(min_chunk_size=10, max_chunk_size=100)
indexer = ProjectIndexer(project_path, chunker=chunker)
stats = indexer.index_project()
print(f" Indexed {stats['files_indexed']} files")
print(f" Created {stats['chunks_created']} chunks")
print(f" Time: {stats['time_taken']:.2f} seconds")
# 3. Demonstrate search capabilities
print("\n3. Testing search capabilities...")
searcher = CodeSearcher(project_path)
# Test different search types
print("\n a) Semantic search for 'calculate average':")
results = searcher.search("calculate average", limit=3)
for i, result in enumerate(results, 1):
print(f" {i}. {result.chunk_type} '{result.name}' in {result.file_path} (score: {result.score:.3f})")
print("\n b) BM25-weighted search for 'divide zero':")
results = searcher.search("divide zero", limit=3, semantic_weight=0.2, bm25_weight=0.8)
for i, result in enumerate(results, 1):
print(f" {i}. {result.chunk_type} '{result.name}' in {result.file_path} (score: {result.score:.3f})")
print("\n c) Search with context for 'test addition':")
results = searcher.search("test addition", limit=2, include_context=True)
for i, result in enumerate(results, 1):
print(f" {i}. {result.chunk_type} '{result.name}'")
if result.parent_chunk:
print(f" Parent: {result.parent_chunk.name}")
if result.context_before:
print(f" Has previous context: {len(result.context_before)} chars")
if result.context_after:
print(f" Has next context: {len(result.context_after)} chars")
# 4. Test chunk navigation
print("\n4. Testing chunk navigation...")
# Get all chunks to find a method
df = searcher.table.to_pandas()
method_chunks = df[df['chunk_type'] == 'method']
if len(method_chunks) > 0:
# Pick a method in the middle
mid_idx = len(method_chunks) // 2
chunk_id = method_chunks.iloc[mid_idx]['chunk_id']
chunk_name = method_chunks.iloc[mid_idx]['name']
print(f"\n Getting context for method '{chunk_name}':")
context = searcher.get_chunk_context(chunk_id)
if context['chunk']:
print(f" Current: {context['chunk'].name}")
if context['prev']:
print(f" Previous: {context['prev'].name}")
if context['next']:
print(f" Next: {context['next'].name}")
if context['parent']:
print(f" Parent class: {context['parent'].name}")
# 5. Show statistics
print("\n5. Index Statistics:")
stats = searcher.get_statistics()
print(f" - Total chunks: {stats['total_chunks']}")
print(f" - Unique files: {stats['unique_files']}")
print(f" - Chunk types: {stats['chunk_types']}")
print("\n" + "=" * 60)
print(" All features working correctly!")
print("=" * 60)
print("\nKey features demonstrated:")
print("- AST-based intelligent chunking preserving code structure")
print("- Chunk metadata (prev/next links, parent class, indices)")
print("- Hybrid search combining BM25 and semantic similarity")
print("- Context-aware search with adjacent chunks")
print("- Chunk navigation following code relationships")
if __name__ == "__main__":
main()