fss-mini-rag-github/examples/config-llm-providers.yaml
BobAi a84ff94fba Improve UX with streaming tokens, fix model references, and add icon integration
This comprehensive update enhances user experience with several key improvements:

## Enhanced Streaming & Thinking Display
- Implement real-time streaming with gray thinking tokens that collapse after completion
- Fix thinking token redisplay bug with proper content filtering
- Add clear "AI Response:" headers to separate thinking from responses
- Enable streaming by default for better user engagement
- Keep thinking visible for exploration, collapse only for suggested questions

## Natural Conversation Responses
- Convert clunky JSON exploration responses to natural, conversational format
- Improve exploration prompts for friendly, colleague-style interactions
- Update summary generation with better context handling
- Eliminate double response display issues

## Model Reference Updates
- Remove all llama3.2 references in favor of qwen3 models
- Fix non-existent qwen3:3b references, replace with proper model names
- Update model rankings to prioritize working qwen models across all components
- Ensure consistent model recommendations in docs and examples

## Cross-Platform Icon Integration
- Add desktop icon setup to Linux installer with .desktop entry
- Add Windows shortcuts for desktop and Start Menu integration
- Improve installer user experience with visual branding

## Configuration & Navigation Fixes
- Fix "0" option in configuration menu to properly go back
- Improve configuration menu user-friendliness
- Update troubleshooting guides with correct model suggestions

These changes significantly improve the beginner experience while maintaining
technical accuracy and system reliability.
2025-08-15 12:20:06 +10:00

233 lines
10 KiB
YAML

# 🌐 LLM PROVIDER ALTERNATIVES - OpenRouter, LM Studio, OpenAI & More
# Educational guide showing how to configure different LLM providers
# Copy sections you need to your main config.yaml
#═════════════════════════════════════════════════════════════════════════════════
# 🎯 QUICK PROVIDER SELECTION GUIDE:
#
# 🏠 LOCAL (Best Privacy, No Internet Needed):
# - Ollama: Great quality, easy setup, free
# - LM Studio: User-friendly GUI, works with many models
#
# ☁️ CLOUD (Powerful Models, Requires API Keys):
# - OpenRouter: Access to many models with one API
# - OpenAI: High quality, reliable, but more expensive
# - Anthropic: Excellent for code analysis
#
# 💰 BUDGET FRIENDLY:
# - OpenRouter (Qwen, Llama models): $0.10-0.50 per million tokens
# - Local Ollama/LM Studio: Completely free
#
# 🚀 PERFORMANCE:
# - Local: Limited by your hardware
# - Cloud: Fast and powerful, costs per use
#═════════════════════════════════════════════════════════════════════════════════
# Standard FSS-Mini-RAG settings (copy these to any config)
chunking:
max_size: 2000
min_size: 150
strategy: semantic
streaming:
enabled: true
threshold_bytes: 1048576
files:
min_file_size: 50
exclude_patterns:
- "node_modules/**"
- ".git/**"
- "__pycache__/**"
- "*.pyc"
- ".venv/**"
- "build/**"
- "dist/**"
include_patterns:
- "**/*"
embedding:
preferred_method: ollama # Use Ollama for embeddings (works with all providers below)
ollama_model: nomic-embed-text
ollama_host: localhost:11434
batch_size: 32
search:
default_top_k: 10
enable_bm25: true
similarity_threshold: 0.1
expand_queries: false
#═════════════════════════════════════════════════════════════════════════════════
# 🤖 LLM PROVIDER CONFIGURATIONS
#═════════════════════════════════════════════════════════════════════════════════
# 🏠 OPTION 1: OLLAMA (LOCAL) - Default and Recommended
# ✅ Pros: Free, private, no API keys, good quality
# ❌ Cons: Uses your computer's resources, limited by hardware
llm:
provider: ollama # Use local Ollama
ollama_host: localhost:11434 # Default Ollama location
synthesis_model: qwen3:1.7b # Good all-around model
# alternatives: qwen3:0.6b (faster), qwen2.5:3b (balanced), qwen3:4b (quality)
expansion_model: qwen3:1.7b
enable_synthesis: false
synthesis_temperature: 0.3
cpu_optimized: true
enable_thinking: true
max_expansion_terms: 8
# 🖥️ OPTION 2: LM STUDIO (LOCAL) - User-Friendly Alternative
# ✅ Pros: Easy GUI, drag-drop model installation, compatible with Ollama
# ❌ Cons: Another app to manage, similar hardware limitations
#
# SETUP STEPS:
# 1. Download LM Studio from lmstudio.ai
# 2. Install a model (try "microsoft/DialoGPT-medium" or "TheBloke/Llama-2-7B-Chat-GGML")
# 3. Start local server in LM Studio (usually port 1234)
# 4. Use this config:
#
# llm:
# provider: openai # LM Studio uses OpenAI-compatible API
# api_base: http://localhost:1234/v1 # LM Studio default port
# api_key: "not-needed" # LM Studio doesn't require real API key
# synthesis_model: "any" # Use whatever model you loaded in LM Studio
# expansion_model: "any"
# enable_synthesis: false
# synthesis_temperature: 0.3
# cpu_optimized: true
# enable_thinking: true
# max_expansion_terms: 8
# ☁️ OPTION 3: OPENROUTER (CLOUD) - Many Models, One API
# ✅ Pros: Access to many models, good prices, no local setup
# ❌ Cons: Requires internet, costs money, less private
#
# SETUP STEPS:
# 1. Sign up at openrouter.ai
# 2. Get API key from dashboard
# 3. Add credits to account ($5-10 goes a long way)
# 4. Use this config:
#
# llm:
# provider: openai # OpenRouter uses OpenAI-compatible API
# api_base: https://openrouter.ai/api/v1
# api_key: "your-openrouter-api-key-here" # Replace with your actual key
# synthesis_model: "meta-llama/llama-3.1-8b-instruct:free" # Free tier model
# # alternatives: "openai/gpt-4o-mini" ($0.15/M), "anthropic/claude-3-haiku" ($0.25/M)
# expansion_model: "meta-llama/llama-3.1-8b-instruct:free"
# enable_synthesis: false
# synthesis_temperature: 0.3
# cpu_optimized: false # Cloud models don't need CPU optimization
# enable_thinking: true
# max_expansion_terms: 8
# timeout: 30 # Longer timeout for internet requests
# 🏢 OPTION 4: OPENAI (CLOUD) - Premium Quality
# ✅ Pros: Excellent quality, very reliable, fast
# ❌ Cons: More expensive, requires OpenAI account
#
# SETUP STEPS:
# 1. Sign up at platform.openai.com
# 2. Add payment method (pay-per-use)
# 3. Create API key in dashboard
# 4. Use this config:
#
# llm:
# provider: openai
# api_key: "your-openai-api-key-here" # Replace with your actual key
# synthesis_model: "gpt-4o-mini" # Affordable option (~$0.15/M tokens)
# # alternatives: "gpt-4o" (premium, ~$2.50/M), "gpt-3.5-turbo" (budget, ~$0.50/M)
# expansion_model: "gpt-4o-mini"
# enable_synthesis: false
# synthesis_temperature: 0.3
# cpu_optimized: false
# enable_thinking: true
# max_expansion_terms: 8
# timeout: 30
# 🧠 OPTION 5: ANTHROPIC CLAUDE (CLOUD) - Excellent for Code
# ✅ Pros: Great at code analysis, very thoughtful responses
# ❌ Cons: Premium pricing, separate API account needed
#
# SETUP STEPS:
# 1. Sign up at console.anthropic.com
# 2. Get API key and add credits
# 3. Use this config:
#
# llm:
# provider: anthropic
# api_key: "your-anthropic-api-key-here" # Replace with your actual key
# synthesis_model: "claude-3-haiku-20240307" # Most affordable option
# # alternatives: "claude-3-sonnet-20240229" (balanced), "claude-3-opus-20240229" (premium)
# expansion_model: "claude-3-haiku-20240307"
# enable_synthesis: false
# synthesis_temperature: 0.3
# cpu_optimized: false
# enable_thinking: true
# max_expansion_terms: 8
# timeout: 30
#═════════════════════════════════════════════════════════════════════════════════
# 🧪 TESTING YOUR CONFIGURATION
#═════════════════════════════════════════════════════════════════════════════════
#
# After setting up any provider, test with these commands:
#
# 1. Test basic search (no LLM needed):
# ./rag-mini search /path/to/project "test query"
#
# 2. Test LLM synthesis:
# ./rag-mini search /path/to/project "test query" --synthesize
#
# 3. Test query expansion:
# Enable expand_queries: true in search section and try:
# ./rag-mini search /path/to/project "auth"
#
# 4. Test thinking mode:
# ./rag-mini explore /path/to/project
# Then ask: "explain the authentication system"
#
#═════════════════════════════════════════════════════════════════════════════════
# 💡 TROUBLESHOOTING
#═════════════════════════════════════════════════════════════════════════════════
#
# ❌ "Connection refused" or "API error":
# - Local: Make sure Ollama/LM Studio is running
# - Cloud: Check API key and internet connection
#
# ❌ "Model not found":
# - Local: Install model with `ollama pull model-name`
# - Cloud: Check model name matches provider's API docs
#
# ❌ "Token limit exceeded" or expensive bills:
# - Use cheaper models like gpt-4o-mini or claude-haiku
# - Enable shorter contexts with max_size: 1500
#
# ❌ Slow responses:
# - Local: Try smaller models (qwen3:0.6b)
# - Cloud: Increase timeout or try different provider
#
# ❌ Poor quality results:
# - Try higher-quality models
# - Adjust synthesis_temperature (0.1 for factual, 0.5 for creative)
# - Enable expand_queries for better search coverage
#
#═════════════════════════════════════════════════════════════════════════════════
# 📚 LEARN MORE
#═════════════════════════════════════════════════════════════════════════════════
#
# Provider Documentation:
# - Ollama: https://ollama.ai/library (model catalog)
# - LM Studio: https://lmstudio.ai/docs (getting started)
# - OpenRouter: https://openrouter.ai/docs (API reference)
# - OpenAI: https://platform.openai.com/docs (API docs)
# - Anthropic: https://docs.anthropic.com/claude/reference (Claude API)
#
# Model Recommendations:
# - Code Analysis: claude-3-sonnet, gpt-4o, llama3.1:8b
# - Fast Responses: gpt-4o-mini, claude-haiku, qwen3:0.6b
# - Budget Friendly: OpenRouter free tier, local Ollama
# - Best Privacy: Local Ollama or LM Studio only
#
#═════════════════════════════════════════════════════════════════════════════════