# ๐Ÿ’Ž QUALITY CONFIG - Best Possible Results # When you want the highest quality search and AI responses # Perfect for: learning new codebases, research, complex analysis #โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• # ๐ŸŽฏ QUALITY-OPTIMIZED SETTINGS - Everything tuned for best results! #โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• # ๐Ÿ“ Chunking for maximum context and quality chunking: max_size: 3000 # Larger chunks = more context per result min_size: 200 # Ensure substantial content per chunk strategy: semantic # Smart splitting that respects code structure # ๐ŸŒŠ Conservative streaming (favor quality over speed) streaming: enabled: true threshold_bytes: 2097152 # 2MB - less aggressive chunking # ๐Ÿ“ Comprehensive file inclusion files: min_file_size: 20 # Include even small files (might contain important info) # ๐ŸŽฏ Minimal exclusions (include more content) exclude_patterns: - "node_modules/**" # Still skip these (too much noise) - ".git/**" # Git history not useful for code search - "__pycache__/**" # Python bytecode - "*.pyc" - ".venv/**" - "build/**" # Compiled artifacts - "dist/**" # Note: We keep logs, docs, configs that might have useful context include_patterns: - "**/*" # Include everything not explicitly excluded # ๐Ÿง  Best embedding quality embedding: preferred_method: ollama # Highest quality embeddings (needs Ollama) ollama_model: nomic-embed-text # Excellent code understanding ml_model: sentence-transformers/all-MiniLM-L6-v2 # Good fallback batch_size: 16 # Smaller batches for stability # ๐Ÿ” Search optimized for comprehensive results search: default_top_k: 15 # More results to choose from enable_bm25: true # Use both semantic and keyword matching similarity_threshold: 0.05 # Very permissive (show more possibilities) expand_queries: true # Automatic query expansion for better recall # ๐Ÿค– High-quality AI analysis llm: synthesis_model: auto # Use best available model enable_synthesis: true # AI explanations by default synthesis_temperature: 0.4 # Good balance of accuracy and insight cpu_optimized: false # Use powerful models if available enable_thinking: true # Show detailed reasoning process max_expansion_terms: 10 # Comprehensive query expansion #โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• # ๐Ÿ’Ž WHAT THIS CONFIG MAXIMIZES: # # ๐ŸŽฏ Search comprehensiveness - find everything relevant # ๐ŸŽฏ Result context - larger chunks with more information # ๐ŸŽฏ AI explanation quality - detailed, thoughtful analysis # ๐ŸŽฏ Query understanding - automatic expansion and enhancement # ๐ŸŽฏ Semantic accuracy - best embedding models available # # โš–๏ธ TRADE-OFFS: # โณ Slower indexing (larger chunks, better embeddings) # โณ Slower searching (query expansion, more results) # ๐Ÿ’พ More storage space (larger index, more files included) # ๐Ÿง  More memory usage (larger batches, bigger models) # โšก Higher CPU/GPU usage (better models) # # ๐ŸŽฏ PERFECT FOR: # โ€ข Learning new, complex codebases # โ€ข Research and analysis tasks # โ€ข When you need to understand WHY code works a certain way # โ€ข Finding subtle connections and patterns # โ€ข Code review and security analysis # โ€ข Academic or professional research # # ๐Ÿ’ป REQUIREMENTS: # โ€ข Ollama installed and running (ollama serve) # โ€ข At least one language model (ollama pull qwen3:1.7b) # โ€ข Decent computer specs (4GB+ RAM recommended) # โ€ข Patience for thorough analysis ๐Ÿ˜Š # # ๐Ÿš€ TO USE THIS CONFIG: # 1. Install Ollama: curl -fsSL https://ollama.ai/install.sh | sh # 2. Start Ollama: ollama serve # 3. Install a model: ollama pull qwen3:1.7b # 4. Copy config: cp examples/config-quality.yaml .mini-rag/config.yaml # 5. Index project: ./rag-mini index /path/to/project # 6. Enjoy comprehensive analysis: ./rag-mini explore /path/to/project #โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• # ๐Ÿงช ADVANCED QUALITY TUNING (optional): # # For even better results, try these model combinations: # โ€ข ollama pull nomic-embed-text:latest (best embeddings) # โ€ข ollama pull qwen3:1.7b (good general model) # โ€ข ollama pull qwen3:4b (excellent for analysis) # # Or adjust these settings for your specific needs: # โ€ข similarity_threshold: 0.3 (more selective results) # โ€ข max_size: 4000 (even more context per result) # โ€ข enable_thinking: false (hide reasoning, show just answers) # โ€ข synthesis_temperature: 0.2 (more conservative AI responses)