Add new Mini-RAG logo and clean repository structure

- Added beautiful new Mini-RAG logo with teal and purple colors
- Updated README to use new logo
- Cleaned up repository by removing development scripts and artifacts
- Repository structure now clean and professional
- Ready for GitHub release preparation
This commit is contained in:
BobAi 2025-08-12 21:14:42 +10:00
parent 2f2f8c7796
commit be488c5a3d
23 changed files with 3 additions and 2805 deletions

View File

@ -1,53 +0,0 @@
# FSS-Mini-RAG Configuration
# Edit this file to customize indexing and search behavior
# See docs/GETTING_STARTED.md for detailed explanations
# Text chunking settings
chunking:
max_size: 2000 # Maximum characters per chunk
min_size: 150 # Minimum characters per chunk
strategy: semantic # 'semantic' (language-aware) or 'fixed'
# Large file streaming settings
streaming:
enabled: true
threshold_bytes: 1048576 # Files larger than this use streaming (1MB)
# File processing settings
files:
min_file_size: 50 # Skip files smaller than this
exclude_patterns:
- "node_modules/**"
- ".git/**"
- "__pycache__/**"
- "*.pyc"
- ".venv/**"
- "venv/**"
- "build/**"
- "dist/**"
include_patterns:
- "**/*" # Include all files by default
# Embedding generation settings
embedding:
preferred_method: ollama # 'ollama', 'ml', 'hash', or 'auto'
ollama_model: nomic-embed-text
ollama_host: localhost:11434
ml_model: sentence-transformers/all-MiniLM-L6-v2
batch_size: 32 # Embeddings processed per batch
# Search behavior settings
search:
default_limit: 10 # Default number of results
enable_bm25: true # Enable keyword matching boost
similarity_threshold: 0.1 # Minimum similarity score
expand_queries: false # Enable automatic query expansion
# LLM synthesis and query expansion settings
llm:
ollama_host: localhost:11434
synthesis_model: auto # 'auto', 'qwen3:1.7b', etc.
expansion_model: auto # Usually same as synthesis_model
max_expansion_terms: 8 # Maximum terms to add to queries
enable_synthesis: false # Enable synthesis by default
synthesis_temperature: 0.3 # LLM temperature for analysis

View File

@ -1 +0,0 @@
chunking

View File

@ -1,14 +1,10 @@
# FSS-Mini-RAG # FSS-Mini-RAG
![FSS-Mini-RAG Logo](assets/Fss_Mini_Rag.png)
> **A lightweight, educational RAG system that actually works** > **A lightweight, educational RAG system that actually works**
> *Built for beginners who want results, and developers who want to understand how RAG really works* > *Built for beginners who want results, and developers who want to understand how RAG really works*
## Demo
![FSS-Mini-RAG Demo](recordings/fss-mini-rag-demo-20250812_161410.gif)
*See it in action: index a project and search semantically in seconds*
## How It Works ## How It Works
```mermaid ```mermaid
@ -112,9 +108,7 @@ That's it. No external dependencies, no configuration required, no PhD in comput
./rag-mini status ~/new-project # Check index health ./rag-mini status ~/new-project # Check index health
``` ```
![FSS-Mini-RAG Search Demo](recordings/fss-mini-rag-demo-20250812_160725.gif) *Ready to try semantic search with synthesis and exploration modes? Follow the quick start below!*
*Advanced usage: semantic search with synthesis and exploration modes*
## Installation Options ## Installation Options

View File

@ -1,290 +0,0 @@
#!/usr/bin/env python3
"""
Asciinema to GIF Converter
Converts .cast files to optimized GIF animations without external services.
"""
import os
import sys
import json
import argparse
import subprocess
from pathlib import Path
from typing import List, Dict, Any
import tempfile
import shutil
class AsciinemaToGIF:
def __init__(self):
self.temp_dir = None
def check_dependencies(self) -> Dict[str, bool]:
"""Check if required tools are available."""
tools = {
'ffmpeg': self._check_command('ffmpeg'),
'convert': self._check_command('convert'), # ImageMagick
'gifsicle': self._check_command('gifsicle') # Optional optimizer
}
return tools
def _check_command(self, command: str) -> bool:
"""Check if a command is available."""
return shutil.which(command) is not None
def install_instructions(self):
"""Show installation instructions for missing dependencies."""
print("📦 Required Dependencies:")
print()
print("Ubuntu/Debian:")
print(" sudo apt install ffmpeg imagemagick gifsicle")
print()
print("macOS:")
print(" brew install ffmpeg imagemagick gifsicle")
print()
print("Arch Linux:")
print(" sudo pacman -S ffmpeg imagemagick gifsicle")
def parse_cast_file(self, cast_path: Path) -> Dict[str, Any]:
"""Parse asciinema .cast file."""
with open(cast_path, 'r') as f:
lines = f.readlines()
# First line is header
header = json.loads(lines[0])
# Remaining lines are events
events = []
for line in lines[1:]:
if line.strip():
events.append(json.loads(line))
return {
'header': header,
'events': events,
'width': header.get('width', 80),
'height': header.get('height', 24)
}
def create_frames(self, cast_data: Dict[str, Any], output_dir: Path) -> List[Path]:
"""Create individual frame images from cast data."""
print("🎬 Creating frames...")
width = cast_data['width']
height = cast_data['height']
events = cast_data['events']
# Terminal state
screen = [[' ' for _ in range(width)] for _ in range(height)]
cursor_x, cursor_y = 0, 0
frames = []
frame_count = 0
last_time = 0
for event in events:
timestamp, event_type, data = event
# Calculate delay
delay = timestamp - last_time
last_time = timestamp
if event_type == 'o': # Output event
# Process terminal output
for char in data:
if char == '\n':
cursor_y += 1
cursor_x = 0
if cursor_y >= height:
# Scroll up
screen = screen[1:] + [[' ' for _ in range(width)]]
cursor_y = height - 1
elif char == '\r':
cursor_x = 0
elif char == '\033':
# Skip ANSI escape sequences (simplified)
continue
elif char.isprintable():
if cursor_x < width and cursor_y < height:
screen[cursor_y][cursor_x] = char
cursor_x += 1
# Create frame if significant delay or content change
if delay > 0.1 or frame_count == 0:
frame_path = self._create_frame_image(screen, output_dir, frame_count, delay)
frames.append((frame_path, delay))
frame_count += 1
return frames
def _create_frame_image(self, screen: List[List[str]], output_dir: Path,
frame_num: int, delay: float) -> Path:
"""Create a single frame image using ImageMagick."""
# Convert screen to text
text_content = []
for row in screen:
line = ''.join(row).rstrip()
text_content.append(line)
# Create text file
text_file = output_dir / f"frame_{frame_num:04d}.txt"
with open(text_file, 'w') as f:
f.write('\n'.join(text_content))
# Convert to image using ImageMagick
image_file = output_dir / f"frame_{frame_num:04d}.png"
cmd = [
'convert',
'-font', 'Liberation-Mono', # Monospace font
'-pointsize', '12',
'-background', '#1e1e1e', # Dark background
'-fill', '#d4d4d4', # Light text
'-gravity', 'NorthWest',
f'label:@{text_file}',
str(image_file)
]
try:
subprocess.run(cmd, check=True, capture_output=True)
return image_file
except subprocess.CalledProcessError as e:
print(f"❌ Failed to create frame {frame_num}: {e}")
return None
def create_gif(self, frames: List[tuple], output_path: Path, fps: int = 10) -> bool:
"""Create GIF from frame images using ffmpeg."""
print("🎞️ Creating GIF...")
if not frames:
print("❌ No frames to process")
return False
# Create ffmpeg input file list
input_list = self.temp_dir / "input_list.txt"
with open(input_list, 'w') as f:
for frame_path, delay in frames:
if frame_path and frame_path.exists():
duration = max(delay, 0.1) # Minimum 0.1s per frame
f.write(f"file '{frame_path}'\n")
f.write(f"duration {duration}\n")
# Create GIF with ffmpeg
cmd = [
'ffmpeg',
'-f', 'concat',
'-safe', '0',
'-i', str(input_list),
'-vf', 'fps=10,scale=800:-1:flags=lanczos,palettegen=reserve_transparent=0',
'-y',
str(output_path)
]
try:
subprocess.run(cmd, check=True, capture_output=True)
return True
except subprocess.CalledProcessError as e:
print(f"❌ FFmpeg failed: {e}")
return False
def optimize_gif(self, gif_path: Path) -> bool:
"""Optimize GIF using gifsicle."""
if not self._check_command('gifsicle'):
return True # Skip if not available
print("🗜️ Optimizing GIF...")
optimized_path = gif_path.with_suffix('.optimized.gif')
cmd = [
'gifsicle',
'-O3',
'--lossy=80',
'--colors', '256',
str(gif_path),
'-o', str(optimized_path)
]
try:
subprocess.run(cmd, check=True, capture_output=True)
# Replace original with optimized
shutil.move(optimized_path, gif_path)
return True
except subprocess.CalledProcessError as e:
print(f"⚠️ Optimization failed: {e}")
return False
def convert(self, cast_path: Path, output_path: Path, fps: int = 10) -> bool:
"""Convert asciinema cast file to GIF."""
print(f"🎯 Converting {cast_path.name} to GIF...")
# Check dependencies
deps = self.check_dependencies()
missing = [tool for tool, available in deps.items() if not available and tool != 'gifsicle']
if missing:
print(f"❌ Missing required tools: {', '.join(missing)}")
print()
self.install_instructions()
return False
# Create temporary directory
self.temp_dir = Path(tempfile.mkdtemp(prefix='asciinema_gif_'))
try:
# Parse cast file
print("📖 Parsing cast file...")
cast_data = self.parse_cast_file(cast_path)
# Create frames
frames = self.create_frames(cast_data, self.temp_dir)
if not frames:
print("❌ No frames created")
return False
# Create GIF
success = self.create_gif(frames, output_path, fps)
if success:
# Optimize
self.optimize_gif(output_path)
# Show results
size_mb = output_path.stat().st_size / (1024 * 1024)
print(f"✅ GIF created: {output_path}")
print(f"📏 Size: {size_mb:.2f} MB")
return True
else:
return False
finally:
# Cleanup
if self.temp_dir and self.temp_dir.exists():
shutil.rmtree(self.temp_dir)
def main():
parser = argparse.ArgumentParser(description='Convert asciinema recordings to GIF')
parser.add_argument('input', type=Path, help='Input .cast file')
parser.add_argument('-o', '--output', type=Path, help='Output .gif file (default: same name as input)')
parser.add_argument('--fps', type=int, default=10, help='Frames per second (default: 10)')
args = parser.parse_args()
if not args.input.exists():
print(f"❌ Input file not found: {args.input}")
sys.exit(1)
if not args.output:
args.output = args.input.with_suffix('.gif')
converter = AsciinemaToGIF()
success = converter.convert(args.input, args.output, args.fps)
if success:
print("🎉 Conversion complete!")
else:
print("💥 Conversion failed!")
sys.exit(1)
if __name__ == '__main__':
main()

BIN
assets/Fss_Mini_Rag.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 198 KiB

BIN
assets/Fss_Rag.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 221 KiB

View File

@ -1,25 +0,0 @@
# Icon Placeholder
The current `icon.svg` is a simple placeholder. Here's the design concept:
🔍 **Search magnifying glass** - Core search functionality
📄 **Code brackets** - Code-focused system
🧠 **Neural network dots** - AI/embedding intelligence
📝 **Text lines** - Document processing
## Design Ideas for Final Icon
- **Colors**: Blue (#1976d2) for trust/tech, Green (#4caf50) for code, Orange (#ff9800) for AI
- **Elements**: Search + Code + AI/Brain + Simplicity
- **Style**: Clean, modern, friendly (not intimidating)
- **Size**: Works well at 32x32 and 128x128
## Suggested Improvements
1. More polished magnifying glass with reflection
2. Cleaner code bracket styling
3. More sophisticated neural network representation
4. Perhaps a small "mini" indicator to emphasize lightweight nature
5. Consider a folder or document icon to represent project indexing
The current SVG provides the basic structure and can be refined into a professional icon.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 179 KiB

View File

@ -1,35 +0,0 @@
<svg width="128" height="128" viewBox="0 0 128 128" xmlns="http://www.w3.org/2000/svg">
<!-- Background circle -->
<circle cx="64" cy="64" r="60" fill="#e3f2fd" stroke="#1976d2" stroke-width="4"/>
<!-- Search magnifying glass -->
<circle cx="48" cy="48" r="18" fill="none" stroke="#1976d2" stroke-width="4"/>
<line x1="62" y1="62" x2="76" y2="76" stroke="#1976d2" stroke-width="4" stroke-linecap="round"/>
<!-- Code brackets -->
<path d="M20 35 L10 45 L20 55" fill="none" stroke="#4caf50" stroke-width="3" stroke-linecap="round"/>
<path d="M108 35 L118 45 L108 55" fill="none" stroke="#4caf50" stroke-width="3" stroke-linecap="round"/>
<!-- Neural network dots -->
<circle cx="85" cy="25" r="3" fill="#ff9800"/>
<circle cx="100" cy="35" r="3" fill="#ff9800"/>
<circle cx="90" cy="45" r="3" fill="#ff9800"/>
<circle cx="105" cy="55" r="3" fill="#ff9800"/>
<!-- Connection lines -->
<line x1="85" y1="25" x2="100" y2="35" stroke="#ff9800" stroke-width="2" opacity="0.7"/>
<line x1="100" y1="35" x2="90" y2="45" stroke="#ff9800" stroke-width="2" opacity="0.7"/>
<line x1="90" y1="45" x2="105" y2="55" stroke="#ff9800" stroke-width="2" opacity="0.7"/>
<!-- Text elements -->
<rect x="15" y="75" width="25" height="3" fill="#666" rx="1"/>
<rect x="15" y="82" width="35" height="3" fill="#666" rx="1"/>
<rect x="15" y="89" width="20" height="3" fill="#666" rx="1"/>
<rect x="60" y="85" width="30" height="3" fill="#2196f3" rx="1"/>
<rect x="60" y="92" width="25" height="3" fill="#2196f3" rx="1"/>
<rect x="60" y="99" width="35" height="3" fill="#2196f3" rx="1"/>
<!-- "RAG" text -->
<text x="64" y="118" text-anchor="middle" font-family="Arial, sans-serif" font-size="14" font-weight="bold" fill="#1976d2">RAG</text>
</svg>

Before

Width:  |  Height:  |  Size: 1.7 KiB

View File

@ -1,278 +0,0 @@
#!/usr/bin/env python3
"""
Script to completely remove all Mini-RAG references from the FSS-Mini-RAG codebase.
This ensures the repository is completely independent and avoids any licensing issues.
"""
import os
import shutil
import re
from pathlib import Path
from typing import Dict, List, Tuple
class Mini-RAGCleanup:
def __init__(self, project_root: Path):
self.project_root = Path(project_root).resolve()
self.replacements = {
# Directory/module names
'mini_rag': 'mini_rag',
'mini-rag': 'mini-rag',
# Class names and references
'MiniRAG': 'MiniRAG',
'Mini RAG': 'Mini RAG',
'Mini RAG': 'mini rag',
'mini_rag': 'MINI_RAG',
# File paths and imports
'from mini_rag': 'from mini_rag',
'import mini_rag': 'import mini_rag',
'.mini-rag': '.mini-rag',
# Comments and documentation
'Mini-RAG': 'Mini-RAG',
'Mini-RAG': 'mini-rag',
# Specific technical references
'the development environment': 'the development environment',
'AI assistant': 'AI assistant',
'Mini-RAG\'s': 'the system\'s',
# Config and metadata
'mini_': 'mini_',
'mini_': 'Mini_',
}
self.files_to_rename = []
self.dirs_to_rename = []
self.files_modified = []
def scan_for_references(self) -> Dict[str, int]:
"""Scan for all Mini-RAG references and return counts."""
references = {}
for root, dirs, files in os.walk(self.project_root):
# Skip git directory
if '.git' in root:
continue
for file in files:
if file.endswith(('.py', '.md', '.sh', '.yaml', '.json', '.txt')):
file_path = Path(root) / file
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
for old_ref in self.replacements.keys():
count = content.lower().count(old_ref.lower())
if count > 0:
if old_ref not in references:
references[old_ref] = 0
references[old_ref] += count
except Exception as e:
print(f"Warning: Could not scan {file_path}: {e}")
return references
def rename_directories(self):
"""Rename directories with Mini-RAG references."""
print("🔄 Renaming directories...")
# Find directories to rename
for root, dirs, files in os.walk(self.project_root):
if '.git' in root:
continue
for dir_name in dirs:
if 'Mini-RAG' in dir_name.lower():
old_path = Path(root) / dir_name
new_name = dir_name.replace('mini_rag', 'mini_rag').replace('mini-rag', 'mini-rag')
new_path = Path(root) / new_name
self.dirs_to_rename.append((old_path, new_path))
# Actually rename directories (do this carefully with git)
for old_path, new_path in self.dirs_to_rename:
if old_path.exists():
print(f" 📁 {old_path.name}{new_path.name}")
# Use git mv to preserve history
try:
os.system(f'git mv "{old_path}" "{new_path}"')
except Exception as e:
print(f" Warning: git mv failed, using regular rename: {e}")
shutil.move(str(old_path), str(new_path))
def update_file_contents(self):
"""Update file contents to replace Mini-RAG references."""
print("📝 Updating file contents...")
for root, dirs, files in os.walk(self.project_root):
if '.git' in root:
continue
for file in files:
if file.endswith(('.py', '.md', '.sh', '.yaml', '.json', '.txt')):
file_path = Path(root) / file
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
original_content = f.read()
modified_content = original_content
changes_made = False
# Apply replacements in order (most specific first)
sorted_replacements = sorted(self.replacements.items(),
key=lambda x: len(x[0]), reverse=True)
for old_ref, new_ref in sorted_replacements:
if old_ref in modified_content:
modified_content = modified_content.replace(old_ref, new_ref)
changes_made = True
# Also handle case variations
if old_ref.lower() in modified_content.lower():
# Use regex for case-insensitive replacement
pattern = re.escape(old_ref)
modified_content = re.sub(pattern, new_ref, modified_content, flags=re.IGNORECASE)
changes_made = True
# Write back if changes were made
if changes_made and modified_content != original_content:
with open(file_path, 'w', encoding='utf-8') as f:
f.write(modified_content)
self.files_modified.append(file_path)
print(f" 📄 Updated: {file_path.relative_to(self.project_root)}")
except Exception as e:
print(f"Warning: Could not process {file_path}: {e}")
def update_imports_and_paths(self):
"""Update Python imports and file paths."""
print("🔗 Updating imports and paths...")
# Special handling for Python imports
for root, dirs, files in os.walk(self.project_root):
if '.git' in root:
continue
for file in files:
if file.endswith('.py'):
file_path = Path(root) / file
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# Fix relative imports
content = re.sub(r'from \.mini_rag', 'from .mini_rag', content)
content = re.sub(r'from mini_rag', 'from mini_rag', content)
content = re.sub(r'import mini_rag', 'import mini_rag', content)
# Fix file paths in strings
content = content.replace("'mini_rag'", "'mini_rag'")
content = content.replace('"mini_rag"', '"mini_rag"')
content = content.replace("'mini-rag'", "'mini-rag'")
content = content.replace('"mini-rag"', '"mini-rag"')
content = content.replace("'.mini-rag'", "'.mini-rag'")
content = content.replace('".mini-rag"', '".mini-rag"')
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
except Exception as e:
print(f"Warning: Could not update imports in {file_path}: {e}")
def verify_cleanup(self) -> Tuple[int, List[str]]:
"""Verify that cleanup was successful."""
print("🔍 Verifying cleanup...")
remaining_refs = []
total_count = 0
for root, dirs, files in os.walk(self.project_root):
if '.git' in root:
continue
for file in files:
if file.endswith(('.py', '.md', '.sh', '.yaml', '.json', '.txt')):
file_path = Path(root) / file
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# Look for any remaining "Mini-RAG" references (case insensitive)
lines = content.split('\n')
for i, line in enumerate(lines, 1):
if 'Mini-RAG' in line.lower():
remaining_refs.append(f"{file_path}:{i}: {line.strip()}")
total_count += 1
except Exception:
pass
return total_count, remaining_refs
def run_cleanup(self):
"""Run the complete cleanup process."""
print("🧹 Starting Mini-RAG Reference Cleanup")
print("=" * 50)
# Initial scan
print("📊 Scanning for Mini-RAG references...")
initial_refs = self.scan_for_references()
print(f"Found {sum(initial_refs.values())} total references")
for ref, count in sorted(initial_refs.items(), key=lambda x: x[1], reverse=True):
if count > 0:
print(f"{ref}: {count} occurrences")
print()
# Rename directories first
self.rename_directories()
# Update file contents
self.update_file_contents()
# Fix imports and paths
self.update_imports_and_paths()
# Verify cleanup
remaining_count, remaining_refs = self.verify_cleanup()
print("\n" + "=" * 50)
print("🎯 Cleanup Summary:")
print(f"📁 Directories renamed: {len(self.dirs_to_rename)}")
print(f"📄 Files modified: {len(self.files_modified)}")
print(f"⚠️ Remaining references: {remaining_count}")
if remaining_refs:
print("\nRemaining Mini-RAG references to review:")
for ref in remaining_refs[:10]: # Show first 10
print(f"{ref}")
if len(remaining_refs) > 10:
print(f" ... and {len(remaining_refs) - 10} more")
if remaining_count == 0:
print("✅ Cleanup successful! No Mini-RAG references remain.")
else:
print("⚠️ Some references remain - please review manually.")
return remaining_count == 0
def main():
project_root = Path(__file__).parent
cleaner = Mini-RAGCleanup(project_root)
success = cleaner.run_cleanup()
if success:
print("\n🎉 Ready to commit changes!")
print("Next steps:")
print("1. Review changes: git status")
print("2. Test the application: ./rag-mini --help")
print("3. Commit changes: git add . && git commit -m 'Remove all Mini-RAG references'")
else:
print("\n⚠️ Manual review required before committing.")
if __name__ == "__main__":
main()

View File

@ -1,123 +0,0 @@
#!/bin/bash
# Create both demo GIFs for FSS-Mini-RAG
echo "🎬 FSS-Mini-RAG Demo GIF Creation Script"
echo "========================================"
echo
# Check dependencies
if ! command -v asciinema &> /dev/null; then
echo "❌ asciinema not found. Install with:"
echo " curl -sL https://asciinema.org/install | sh"
exit 1
fi
if ! command -v agg &> /dev/null; then
echo "❌ agg not found. Install with:"
echo " cargo install --git https://github.com/asciinema/agg"
exit 1
fi
echo "✅ Dependencies found: asciinema, agg"
echo
# Create recordings directory
mkdir -p recordings
# Demo 1: Synthesis Mode
echo "🚀 Creating Synthesis Mode Demo..."
echo "==================================="
echo "This demo shows fast RAG search with AI synthesis"
echo
read -p "Press Enter to record Synthesis Mode demo..."
echo "Recording in 3 seconds..."
sleep 1
echo "2..."
sleep 1
echo "1..."
sleep 1
asciinema rec recordings/synthesis_demo.cast -c "python3 create_synthesis_demo.py" --overwrite
echo
echo "🎨 Converting to GIF..."
agg recordings/synthesis_demo.cast recordings/synthesis_demo.gif
echo "✅ Synthesis demo saved: recordings/synthesis_demo.gif"
echo
# Demo 2: Exploration Mode
echo "🧠 Creating Exploration Mode Demo..."
echo "===================================="
echo "This demo shows interactive thinking mode with conversation memory"
echo
read -p "Press Enter to record Exploration Mode demo..."
echo "Recording in 3 seconds..."
sleep 1
echo "2..."
sleep 1
echo "1..."
sleep 1
asciinema rec recordings/exploration_demo.cast -c "python3 create_exploration_demo.py" --overwrite
echo
echo "🎨 Converting to GIF..."
agg recordings/exploration_demo.gif recordings/exploration_demo.gif
echo "✅ Exploration demo saved: recordings/exploration_demo.gif"
echo
# Summary
echo "🎉 DEMO CREATION COMPLETE!"
echo "=========================="
echo
echo "📁 Created files:"
echo " • recordings/synthesis_demo.cast"
echo " • recordings/synthesis_demo.gif"
echo " • recordings/exploration_demo.cast"
echo " • recordings/exploration_demo.gif"
echo
echo "💡 Usage suggestions:"
echo " • Use synthesis_demo.gif to show fast RAG search capabilities"
echo " • Use exploration_demo.gif to show interactive learning features"
echo " • Both demonstrate the clean two-mode architecture"
echo
echo "🚀 Upload to GitHub:"
echo " • Replace existing demo.gif with synthesis_demo.gif for main README"
echo " • Add exploration_demo.gif for exploration mode documentation"
echo " • Consider side-by-side comparison showing both modes"
echo
# Optional: create side-by-side comparison
read -p "Create side-by-side comparison image? (y/N): " -n 1 -r
echo
if [[ $REPLY =~ ^[Yy]$ ]]; then
if command -v ffmpeg &> /dev/null; then
echo "🎬 Creating side-by-side comparison..."
# Convert GIFs to MP4 first (better quality)
ffmpeg -i recordings/synthesis_demo.gif -c:v libx264 -pix_fmt yuv420p recordings/synthesis_demo.mp4 -y
ffmpeg -i recordings/exploration_demo.gif -c:v libx264 -pix_fmt yuv420p recordings/exploration_demo.mp4 -y
# Create side-by-side
ffmpeg -i recordings/synthesis_demo.mp4 -i recordings/exploration_demo.mp4 -filter_complex \
"[0:v][1:v]hstack=inputs=2[v]" -map "[v]" recordings/side_by_side_demo.mp4 -y
# Convert back to GIF
ffmpeg -i recordings/side_by_side_demo.mp4 recordings/side_by_side_demo.gif -y
echo "✅ Side-by-side demo created: recordings/side_by_side_demo.gif"
else
echo "⚠️ ffmpeg not found - skipping side-by-side creation"
fi
fi
echo
echo "🎯 Next Steps:"
echo " 1. Review the generated GIFs"
echo " 2. Update README.md with new demos"
echo " 3. Upload to GitHub for better project presentation"
echo " 4. Consider adding both GIFs to documentation"

View File

@ -1,252 +0,0 @@
#!/usr/bin/env python3
"""
Create an animated demo script that simulates the FSS-Mini-RAG TUI experience.
This script generates a realistic but controlled demonstration for GIF recording.
"""
import time
import sys
import os
from typing import List
class DemoSimulator:
def __init__(self):
self.width = 80
self.height = 24
def clear_screen(self):
"""Clear the terminal screen."""
print("\033[H\033[2J", end="")
def type_text(self, text: str, delay: float = 0.03):
"""Simulate typing text character by character."""
for char in text:
print(char, end="", flush=True)
time.sleep(delay)
print()
def pause(self, duration: float):
"""Pause for the specified duration."""
time.sleep(duration)
def show_header(self):
"""Display the TUI header."""
print("╔════════════════════════════════════════════════════╗")
print("║ FSS-Mini-RAG TUI ║")
print("║ Semantic Code Search Interface ║")
print("╚════════════════════════════════════════════════════╝")
print()
def show_menu(self):
"""Display the main menu."""
print("🎯 Main Menu")
print("============")
print()
print("1. Select project directory")
print("2. Index project for search")
print("3. Search project")
print("4. View status")
print("5. Configuration")
print("6. CLI command reference")
print("7. Exit")
print()
print("💡 All these actions can be done via CLI commands")
print(" You'll see the commands as you use this interface!")
print()
def simulate_project_selection(self):
"""Simulate selecting a project directory."""
print("Select option (number): ", end="", flush=True)
self.type_text("1", delay=0.15)
self.pause(0.5)
print()
print("📁 Select Project Directory")
print("===========================")
print()
print("Project path: ", end="", flush=True)
self.type_text("./demo-project", delay=0.08)
self.pause(0.8)
print()
print("✅ Selected: ./demo-project")
print()
print("💡 CLI equivalent: rag-mini index ./demo-project")
self.pause(1.5)
def simulate_indexing(self):
"""Simulate the indexing process."""
self.clear_screen()
self.show_header()
print("🚀 Indexing demo-project")
print("========================")
print()
print("Found 12 files to index")
print()
# Simulate progress bar
print(" Indexing files... ", end="")
progress_chars = "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
for i, char in enumerate(progress_chars):
print(char, end="", flush=True)
time.sleep(0.03) # Slightly faster
if i % 8 == 0:
percentage = int((i / len(progress_chars)) * 100)
print(f" {percentage}%", end="\r")
print(" Indexing files... " + progress_chars[:i+1], end="")
print(" 100%")
print()
print(" Added 58 chunks to database")
print()
print("Indexing Complete!")
print("Files indexed: 12")
print("Chunks created: 58")
print("Time taken: 2.8 seconds")
print("Speed: 4.3 files/second")
print("✅ Indexed 12 files in 2.8s")
print(" Created 58 chunks")
print(" Speed: 4.3 files/sec")
print()
print("💡 CLI equivalent: rag-mini index ./demo-project")
self.pause(2.0)
def simulate_search(self):
"""Simulate searching the indexed project."""
self.clear_screen()
self.show_header()
print("🔍 Search Project")
print("=================")
print()
print("Search query: ", end="", flush=True)
self.type_text('"user authentication"', delay=0.08)
self.pause(0.8)
print()
print("🔍 Searching \"user authentication\" in demo-project")
self.pause(0.5)
print("✅ Found 8 results:")
print()
# Show search results with multi-line previews
results = [
{
"file": "auth/manager.py",
"function": "AuthManager.login()",
"preview": "Authenticate user and create session.\nValidates credentials against database and\nreturns session token on success.",
"score": "0.94"
},
{
"file": "auth/validators.py",
"function": "validate_password()",
"preview": "Validate user password against stored hash.\nSupports bcrypt, scrypt, and argon2 hashing.\nIncludes timing attack protection.",
"score": "0.91"
},
{
"file": "middleware/auth.py",
"function": "require_authentication()",
"preview": "Authentication middleware decorator.\nChecks session tokens and JWT validity.\nRedirects to login on authentication failure.",
"score": "0.88"
},
{
"file": "api/endpoints.py",
"function": "login_endpoint()",
"preview": "Handle user login API requests.\nAccepts JSON credentials, validates input,\nand returns authentication tokens.",
"score": "0.85"
},
{
"file": "models/user.py",
"function": "User.authenticate()",
"preview": "User model authentication method.\nQueries database for user credentials\nand handles account status checks.",
"score": "0.82"
},
{
"file": "auth/tokens.py",
"function": "generate_jwt_token()",
"preview": "Generate JWT authentication tokens.\nIncludes expiration, claims, and signature.\nSupports refresh and access token types.",
"score": "0.79"
},
{
"file": "utils/security.py",
"function": "hash_password()",
"preview": "Secure password hashing utility.\nUses bcrypt with configurable rounds.\nProvides salt generation and validation.",
"score": "0.76"
},
{
"file": "config/auth_settings.py",
"function": "load_auth_config()",
"preview": "Load authentication configuration.\nHandles JWT secrets, token expiration,\nand authentication provider settings.",
"score": "0.73"
}
]
for i, result in enumerate(results, 1):
print(f"📄 Result {i} (Score: {result['score']})")
print(f" File: {result['file']}")
print(f" Function: {result['function']}")
preview_lines = result['preview'].split('\n')
for j, line in enumerate(preview_lines):
if j == 0:
print(f" Preview: {line}")
else:
print(f" {line}")
print()
self.pause(0.6)
print("💡 CLI equivalent: rag-mini search ./demo-project \"user authentication\"")
self.pause(2.5)
def simulate_cli_reference(self):
"""Show CLI command reference."""
self.clear_screen()
self.show_header()
print("🖥️ CLI Command Reference")
print("=========================")
print()
print("What you just did in the TUI:")
print()
print("1⃣ Select & Index Project:")
print(" rag-mini index ./demo-project")
print(" # Indexed 12 files → 58 semantic chunks")
print()
print("2⃣ Search Project:")
print(' rag-mini search ./demo-project "user authentication"')
print(" # Found 8 relevant matches with context")
print()
print("3⃣ Check Status:")
print(" rag-mini status ./demo-project")
print()
print("🚀 You can now use these commands directly!")
print(" No TUI required for power users.")
print()
print("💡 Try semantic queries like:")
print('"error handling""database queries"')
print('"API validation""configuration management"')
self.pause(3.0)
def run_demo(self):
"""Run the complete demo simulation."""
print("🎬 Starting FSS-Mini-RAG Demo...")
self.pause(1.0)
# Clear and show TUI startup
self.clear_screen()
self.show_header()
self.show_menu()
self.pause(1.5)
# Simulate workflow
self.simulate_project_selection()
self.simulate_indexing()
self.simulate_search()
self.simulate_cli_reference()
# Final message
self.clear_screen()
print("🎉 Demo Complete!")
print()
print("FSS-Mini-RAG: Semantic code search that actually works")
print("Copy the folder, run ./rag-mini, and start searching!")
print()
print("Ready to try it yourself? 🚀")
if __name__ == "__main__":
demo = DemoSimulator()
demo.run_demo()

View File

@ -1,270 +0,0 @@
#!/usr/bin/env python3
"""
Create demo GIF for Exploration Mode - Deep Thinking & Interactive Learning
Shows the conversational workflow for understanding and debugging codebases.
"""
import time
import sys
import os
from pathlib import Path
class ExplorationDemoSimulator:
def __init__(self):
self.width = 100
self.height = 35
def clear_screen(self):
print("\033[H\033[2J", end="")
def type_command(self, command: str, delay: float = 0.05):
"""Simulate typing a command."""
print("$ ", end="", flush=True)
for char in command:
print(char, end="", flush=True)
time.sleep(delay)
print()
time.sleep(0.5)
def type_question(self, question: str, delay: float = 0.04):
"""Simulate typing a question in exploration mode."""
print("> ", end="", flush=True)
for char in question:
print(char, end="", flush=True)
time.sleep(delay)
print()
time.sleep(0.5)
def show_thinking(self, duration: float = 2.0):
"""Show thinking animation."""
print("🔍 Analyzing...", end="", flush=True)
for _ in range(3):
time.sleep(duration / 3)
print(".", end="", flush=True)
print()
time.sleep(0.5)
def show_response(self, lines: list, delay: float = 0.4):
"""Show AI response with realistic timing."""
for line in lines:
print(line)
time.sleep(delay)
time.sleep(1.5)
def run_exploration_demo(self):
"""Run the exploration mode demonstration."""
self.clear_screen()
# Title
print("🧠 FSS-Mini-RAG: Exploration Mode Demo")
print("=" * 55)
print("Deep thinking & interactive learning for complex codebases")
print()
time.sleep(2)
# Step 1: Start exploration
print("Step 1: Start interactive exploration session")
print("-" * 45)
self.type_command("rag-mini explore ./webapp-project")
self.show_response([
"🧠 EXPLORATION MODE STARTED",
"=" * 50,
"Project: webapp-project",
"Session: explore_1702845632",
"",
"🎯 This mode uses thinking and remembers context.",
" Perfect for debugging, learning, and deep exploration.",
"",
"💡 Tips:",
" • Ask follow-up questions - I'll remember our conversation",
" • Use 'why', 'how', 'explain' for detailed reasoning",
" • Type 'quit' or 'exit' to end session",
"",
"=" * 50,
"",
"🤔 Ask your first question about the codebase:"
])
# Step 2: First question - How authentication works
print("Step 2: Understanding authentication system")
print("-" * 42)
self.type_question("How does authentication work in this codebase?")
self.show_thinking()
self.show_response([
"",
"🧠 EXPLORATION ANALYSIS (Question #1)",
"Session: 0.2m | Results: 8 | Time: 3.4s",
"=" * 60,
"",
"📝 Analysis:",
" This webapp implements a JWT-based authentication system with",
" session management, role-based permissions, and OAuth2 integration.",
"",
"🔍 Key Insights:",
" • JWT tokens generated in auth/jwt_handler.py with 24h expiry",
" • User sessions stored in Redis for fast lookups and invalidation",
" • Role-based access control through middleware/permissions.py",
" • OAuth2 integration supports Google, GitHub, and Microsoft providers",
" • Password hashing uses bcrypt with 12 rounds for security",
"",
"💡 Code Examples:",
" JWT generation: jwt.encode(payload, SECRET_KEY, algorithm='HS256')",
" Session storage: redis.setex(f'session:{user_id}', 86400, token)",
" Permission check: @require_permission('admin') decorator",
"",
"🎯 Next Steps:",
" • Review JWT secret rotation policy",
" • Consider implementing refresh tokens",
" • Audit OAuth2 scope permissions",
"",
"🟢 Confidence: 91%"
])
# Step 3: Follow-up question - Security concerns
print("Step 3: Follow-up question (context remembered)")
print("-" * 48)
self.type_question("What security concerns should I be aware of?")
self.show_thinking(1.8)
self.show_response([
"",
"🧠 EXPLORATION ANALYSIS (Question #2)",
"Session: 1.4m | Results: 6 | Time: 2.1s",
"=" * 60,
"",
"📝 Analysis:",
" Building on the JWT authentication system we just discussed,",
" I've identified several security considerations that need attention.",
"",
"🔍 Key Insights:",
" • JWT secret is hardcoded in config.py (CRITICAL RISK)",
" • No rate limiting on login endpoints (brute force vulnerable)",
" • Session invalidation only happens on logout, not on password change",
" • OAuth2 state parameter validation could be strengthened",
" • CORS settings allow all origins in development config",
"",
"💡 Code Examples:",
" Vulnerable: SECRET_KEY = 'hardcoded-secret-123'",
" Missing: @rate_limit('5 per minute') on /api/login",
" Risk: CORS_ALLOW_ALL_ORIGINS = True",
"",
"🎯 Next Steps:",
" • Move JWT secret to environment variables immediately",
" • Implement rate limiting with Redis or in-memory store",
" • Add session invalidation on password/email changes",
" • Review and restrict CORS origins for production",
" • Add security headers middleware",
"",
"🔴 Confidence: 94% | Context: 1 previous questions"
])
# Step 4: Third question - Performance issues
print("Step 4: Exploring performance (conversation continues)")
print("-" * 54)
self.type_question("Why might the login process be slow?")
self.show_thinking(2.2)
self.show_response([
"",
"🧠 EXPLORATION ANALYSIS (Question #3)",
"Session: 2.1m | Results: 7 | Time: 2.8s",
"=" * 60,
"",
"📝 Analysis:",
" Considering our previous discussion about JWT auth and security,",
" the login slowness likely stems from several performance bottlenecks.",
"",
"🔍 Key Insights:",
" • bcrypt rounds set to 15 (recommended: 10-12) causing CPU overhead",
" • Database queries for user lookup aren't indexed on email field",
" • Redis connection pool not configured, creating new connections",
" • OAuth2 provider calls lack timeout settings (can hang)",
" • Session cleanup runs synchronously during login flow",
"",
"💡 Code Examples:",
" Slow: bcrypt.hashpw(password, bcrypt.gensalt(rounds=15))",
" Missing: CREATE INDEX idx_users_email ON users(email)",
" Blocking: cleanup_expired_sessions() # Should be async",
"",
"🎯 Next Steps:",
" • Reduce bcrypt rounds to 12 for better balance",
" • Add database index on users.email column",
" • Configure Redis connection pooling",
" • Move session cleanup to background task",
" • Add OAuth2 request timeouts (5-10 seconds)",
"",
"🟡 Confidence: 89% | Context: 2 previous questions"
])
# Step 5: Session summary
print("Step 5: Session summary and conclusion")
print("-" * 38)
self.type_question("summary")
self.show_response([
"",
"🧠 EXPLORATION SESSION SUMMARY",
"=" * 40,
"Project: webapp-project",
"Session ID: explore_1702845632",
"Duration: 2.5 minutes",
"Questions explored: 3",
"",
"📋 Topics explored:",
" 1. How does authentication work in this codebase? (confidence: 91%)",
" 2. What security concerns should I be aware of? (confidence: 94%)",
" 3. Why might the login process be slow? (confidence: 89%)",
"",
"🎯 Key Discoveries:",
" • JWT-based auth with session management",
" • Critical security issues (hardcoded secrets, no rate limiting)",
" • Performance bottlenecks (bcrypt settings, missing indexes)",
"",
"💡 Action Items Generated:",
" • Immediate: Fix hardcoded JWT secret",
" • High Priority: Add rate limiting and database indexes",
" • Monitor: Review OAuth2 configurations"
])
# Step 6: Exit
self.type_question("quit")
self.show_response([
"",
"✅ Exploration session ended.",
"",
"🎬 This was Exploration Mode - perfect for learning and debugging!"
])
# Final summary
print()
print("💡 Exploration Mode Benefits:")
print(" 🧠 Thinking-enabled AI for detailed reasoning")
print(" 💭 Conversation memory across questions")
print(" 🔍 Perfect for debugging and understanding")
print(" 📚 Educational - learn how code really works")
print(" 🎯 Context-aware follow-up responses")
print()
time.sleep(3)
def main():
"""Run the exploration mode demo."""
demo = ExplorationDemoSimulator()
print("Starting FSS-Mini-RAG Exploration Mode Demo...")
print("Record with: asciinema rec exploration_demo.cast")
print("Press Enter to start...")
input()
demo.run_exploration_demo()
print("\n🎯 To create GIF:")
print("agg exploration_demo.cast exploration_demo.gif")
if __name__ == "__main__":
main()

View File

@ -1,178 +0,0 @@
#!/usr/bin/env python3
"""
Create demo GIF for Synthesis Mode - Fast & Consistent RAG Search
Shows the streamlined workflow for quick answers and code discovery.
"""
import time
import sys
import os
from pathlib import Path
class SynthesisDemoSimulator:
def __init__(self):
self.width = 100
self.height = 30
def clear_screen(self):
print("\033[H\033[2J", end="")
def type_command(self, command: str, delay: float = 0.05):
"""Simulate typing a command."""
print("$ ", end="", flush=True)
for char in command:
print(char, end="", flush=True)
time.sleep(delay)
print()
time.sleep(0.5)
def show_output(self, lines: list, delay: float = 0.3):
"""Show command output with realistic timing."""
for line in lines:
print(line)
time.sleep(delay)
time.sleep(1.0)
def run_synthesis_demo(self):
"""Run the synthesis mode demonstration."""
self.clear_screen()
# Title
print("🚀 FSS-Mini-RAG: Synthesis Mode Demo")
print("=" * 50)
print("Fast & consistent RAG search for quick answers")
print()
time.sleep(2)
# Step 1: Index a project
print("Step 1: Index a sample project")
print("-" * 30)
self.type_command("rag-mini index ./sample-project")
self.show_output([
"📁 Indexing project: sample-project",
"🔍 Found 12 files to process",
"✂️ Creating semantic chunks...",
"🧠 Generating embeddings...",
"💾 Building vector index...",
"✅ Indexed 89 chunks from 12 files in 3.2s",
"",
"💡 Try: rag-mini search ./sample-project \"your search here\""
])
# Step 2: Quick search
print("Step 2: Quick semantic search")
print("-" * 30)
self.type_command("rag-mini search ./sample-project \"user authentication\"")
self.show_output([
"🔍 Searching \"user authentication\" in sample-project",
"✅ Found 5 results:",
"",
"1. auth/models.py",
" Score: 0.923",
" Lines: 45-62",
" Context: User class",
" Content:",
" class User:",
" def authenticate(self, password):",
" return bcrypt.checkpw(password, self.password_hash)",
"",
"2. auth/views.py",
" Score: 0.887",
" Lines: 23-41",
" Context: login_view function",
" Content:",
" def login_view(request):",
" user = authenticate(username, password)",
" if user:",
" login(request, user)",
"",
"3. middleware/auth.py",
" Score: 0.845",
" Content: Authentication middleware checking..."
])
# Step 3: Search with AI synthesis
print("Step 3: Add AI synthesis for deeper understanding")
print("-" * 50)
self.type_command("rag-mini search ./sample-project \"error handling\" --synthesize")
self.show_output([
"🔍 Searching \"error handling\" in sample-project",
"🧠 Generating LLM synthesis...",
"✅ Found 4 results:",
"",
"1. utils/exceptions.py",
" Score: 0.934",
" Content: Custom exception classes for API errors...",
"",
"2. api/handlers.py",
" Score: 0.889",
" Content: Global exception handler with logging...",
"",
"🧠 LLM SYNTHESIS",
"=" * 50,
"",
"📝 Summary:",
" This codebase implements a robust error handling system with",
" custom exceptions, global handlers, and structured logging.",
"",
"🔍 Key Findings:",
" • Custom exception hierarchy in utils/exceptions.py",
" • Global error handler catches all API exceptions",
" • Logging integrated with error tracking service",
"",
"💡 Code Patterns:",
" try/except blocks with specific exception types",
" Centralized error response formatting",
"",
"🎯 Suggested Actions:",
" • Review exception hierarchy for completeness",
" • Consider adding error recovery mechanisms",
"",
"🟢 Confidence: 87%"
])
# Step 4: Show performance
print("Step 4: Performance characteristics")
print("-" * 35)
print("⚡ Synthesis Mode Benefits:")
print(" • Lightning fast responses (no thinking overhead)")
print(" • Consistent, reliable results")
print(" • Perfect for code discovery and quick answers")
print(" • Works great with ultra-efficient models (qwen3:0.6b)")
print()
time.sleep(3)
# Step 5: When to use
print("💡 When to use Synthesis Mode:")
print(" ✅ Quick code lookups")
print(" ✅ Finding specific functions or classes")
print(" ✅ Understanding code structure")
print(" ✅ Fast documentation searches")
print(" ✅ Batch processing multiple queries")
print()
print("🧠 For deeper analysis, try: rag-mini explore ./project")
print()
time.sleep(3)
print("🎬 Demo complete! This was Synthesis Mode - optimized for speed.")
def main():
"""Run the synthesis mode demo."""
demo = SynthesisDemoSimulator()
print("Starting FSS-Mini-RAG Synthesis Mode Demo...")
print("Record with: asciinema rec synthesis_demo.cast")
print("Press Enter to start...")
input()
demo.run_synthesis_demo()
print("\n🎯 To create GIF:")
print("agg synthesis_demo.cast synthesis_demo.gif")
if __name__ == "__main__":
main()

View File

@ -1,109 +0,0 @@
#!/bin/bash
# Script to record the FSS-Mini-RAG demo as an animated GIF
set -e
echo "🎬 FSS-Mini-RAG Demo Recording Script"
echo "====================================="
echo
# Check if required tools are available
check_tool() {
if ! command -v "$1" &> /dev/null; then
echo "$1 is required but not installed."
echo " Install with: $2"
exit 1
fi
}
echo "🔧 Checking required tools..."
check_tool "asciinema" "pip install asciinema"
echo "✅ asciinema found"
# Optional: Check for gif conversion tools
if command -v "agg" &> /dev/null; then
echo "✅ agg found (for gif conversion)"
CONVERTER="agg"
elif command -v "svg-term" &> /dev/null; then
echo "✅ svg-term found (for gif conversion)"
CONVERTER="svg-term"
else
echo "⚠️ No gif converter found. You can:"
echo " - Install agg: cargo install --git https://github.com/asciinema/agg"
echo " - Or use online converter at: https://dstein64.github.io/gifcast/"
CONVERTER="none"
fi
echo
# Set up recording environment
export TERM=xterm-256color
export COLUMNS=80
export LINES=24
# Create recording directory
mkdir -p recordings
TIMESTAMP=$(date +"%Y%m%d_%H%M%S")
RECORDING_FILE="recordings/fss-mini-rag-demo-${TIMESTAMP}.cast"
GIF_FILE="recordings/fss-mini-rag-demo-${TIMESTAMP}.gif"
echo "🎥 Starting recording..."
echo " Output: $RECORDING_FILE"
echo
# Record the demo
asciinema rec "$RECORDING_FILE" \
--title "FSS-Mini-RAG Demo" \
--command "python3 create_demo_script.py" \
--cols 80 \
--rows 24
echo
echo "✅ Recording complete: $RECORDING_FILE"
# Convert to GIF if converter is available
if [ "$CONVERTER" = "agg" ]; then
echo "🎨 Converting to GIF with agg..."
agg "$RECORDING_FILE" "$GIF_FILE" \
--font-size 14 \
--line-height 1.2 \
--cols 80 \
--rows 24 \
--theme monokai
echo "✅ GIF created: $GIF_FILE"
# Optimize GIF size
if command -v "gifsicle" &> /dev/null; then
echo "🗜️ Optimizing GIF size..."
gifsicle -O3 --lossy=80 -o "${GIF_FILE}.optimized" "$GIF_FILE"
mv "${GIF_FILE}.optimized" "$GIF_FILE"
echo "✅ GIF optimized"
fi
elif [ "$CONVERTER" = "svg-term" ]; then
echo "🎨 Converting to SVG with svg-term..."
svg-term --cast "$RECORDING_FILE" --out "${RECORDING_FILE%.cast}.svg" \
--window --width 80 --height 24
echo "✅ SVG created: ${RECORDING_FILE%.cast}.svg"
echo "💡 Convert SVG to GIF online at: https://cloudconvert.com/svg-to-gif"
fi
echo
echo "🎉 Demo recording complete!"
echo
echo "📁 Files created:"
echo " 📼 Recording: $RECORDING_FILE"
if [ "$CONVERTER" != "none" ] && [ -f "$GIF_FILE" ]; then
echo " 🎞️ GIF: $GIF_FILE"
fi
echo
echo "📋 Next steps:"
echo " 1. Review the recording: asciinema play $RECORDING_FILE"
if [ "$CONVERTER" = "none" ]; then
echo " 2. Convert to GIF online: https://dstein64.github.io/gifcast/"
fi
echo " 3. Add to README.md after the mermaid diagram"
echo " 4. Optimize for web (target: <2MB for fast loading)"
echo
echo "🚀 Perfect demo for showcasing FSS-Mini-RAG!"

View File

@ -1,158 +0,0 @@
{"version": 2, "width": 80, "height": 24, "timestamp": 1754977674, "env": {"SHELL": "/bin/bash", "TERM": "xterm-256color"}, "title": "FSS-Mini-RAG Demo"}
[0.014891, "o", "🎬 Starting FSS-Mini-RAG Demo...\r\n"]
[1.014958, "o", "\u001b[H\u001b[2J╔════════════════════════════════════════════════════╗\r\n║ FSS-Mini-RAG TUI ║\r\n║ Semantic Code Search Interface ║\r\n╚════════════════════════════════════════════════════╝\r\n\r\n🎯 Main Menu\r\n============\r\n\r\n1. Select project directory\r\n2. Index project for search\r\n3. Search project\r\n4. View status\r\n5. Configuration\r\n6. CLI command reference\r\n7. Exit\r\n\r\n💡 All these actions can be done via CLI commands\r\n You'll see the commands as you use this interface!\r\n\r\n"]
[2.515054, "o", "S"]
[2.615209, "o", "e"]
[2.715242, "o", "l"]
[2.815395, "o", "e"]
[2.915451, "o", "c"]
[3.015487, "o", "t"]
[3.115572, "o", " "]
[3.215656, "o", "o"]
[3.315727, "o", "p"]
[3.416006, "o", "t"]
[3.516068, "o", "i"]
[3.616208, "o", "o"]
[3.716279, "o", "n"]
[3.816447, "o", " "]
[3.916533, "o", "("]
[4.016581, "o", "n"]
[4.116668, "o", "u"]
[4.216761, "o", "m"]
[4.316822, "o", "b"]
[4.417016, "o", "e"]
[4.517543, "o", "r"]
[4.617592, "o", ")"]
[4.718071, "o", ":"]
[4.818318, "o", " "]
[4.918361, "o", "1"]
[5.018414, "o", "\r\n"]
[5.518525, "o", "\r\n📁 Select Project Directory\r\n===========================\r\n\r\nE"]
[5.598584, "o", "n"]
[5.678726, "o", "t"]
[5.758779, "o", "e"]
[5.838886, "o", "r"]
[5.919012, "o", " "]
[5.999089, "o", "p"]
[6.079147, "o", "r"]
[6.159235, "o", "o"]
[6.239302, "o", "j"]
[6.319408, "o", "e"]
[6.399486, "o", "c"]
[6.479652, "o", "t"]
[6.559809, "o", " "]
[6.639896, "o", "p"]
[6.720059, "o", "a"]
[6.800089, "o", "t"]
[6.880181, "o", "h"]
[6.960251, "o", ":"]
[7.040319, "o", " "]
[7.120431, "o", "."]
[7.200494, "o", "/"]
[7.280648, "o", "d"]
[7.360669, "o", "e"]
[7.440783, "o", "m"]
[7.520913, "o", "o"]
[7.600973, "o", "-"]
[7.681166, "o", "p"]
[7.761303, "o", "r"]
[7.84134, "o", "o"]
[7.92185, "o", "j"]
[8.001944, "o", "e"]
[8.082028, "o", "c"]
[8.162096, "o", "t"]
[8.242167, "o", "\r\n"]
[9.042306, "o", "\r\n✅ Selected: ./demo-project\r\n\r\n💡 CLI equivalent: rag-mini index ./demo-project\r\n"]
[10.542386, "o", "\u001b[H\u001b[2J╔════════════════════════════════════════════════════╗\r\n║ FSS-Mini-RAG TUI ║\r\n║ Semantic Code Search Interface ║\r\n╚════════════════════════════════════════════════════╝\r\n\r\n🚀 Indexing demo-project\r\n========================\r\n\r\nFound 3 files to index\r\n\r\n"]
[10.542493, "o", " Indexing files... ━"]
[10.582592, "o", " 0%\r Indexing files... ━━"]
[10.622796, "o", "━"]
[10.66291, "o", "━"]
[10.702993, "o", "━"]
[10.743511, "o", "━"]
[10.783632, "o", "━"]
[10.823758, "o", "━"]
[10.863851, "o", "━"]
[10.903941, "o", " 20%\r Indexing files... ━━━━━━━━━━"]
[10.944044, "o", "━"]
[10.984163, "o", "━"]
[11.024229, "o", "━"]
[11.064409, "o", "━"]
[11.104477, "o", "━"]
[11.144566, "o", "━"]
[11.184615, "o", "━"]
[11.224697, "o", " 40%\r Indexing files... ━━━━━━━━━━━━━━━━━━"]
[11.264789, "o", "━"]
[11.304922, "o", "━"]
[11.34499, "o", "━"]
[11.385148, "o", "━"]
[11.42525, "o", "━"]
[11.465388, "o", "━"]
[11.505515, "o", "━"]
[11.545594, "o", " 60%\r Indexing files... ━━━━━━━━━━━━━━━━━━━━━━━━━━"]
[11.585692, "o", "━"]
[11.625812, "o", "━"]
[11.665872, "o", "━"]
[11.706052, "o", "━"]
[11.746099, "o", "━"]
[11.786201, "o", "━"]
[11.826257, "o", "━"]
[11.866434, "o", " 80%\r Indexing files... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"]
[11.906588, "o", "━"]
[11.946604, "o", "━"]
[11.986758, "o", "━"]
[12.027235, "o", "━"]
[12.067334, "o", "━"]
[12.107377, "o", "━"]
[12.147441, "o", " 100%\r\n\r\n Added 15 chunks to database\r\n\r\nIndexing Complete!\r\nFiles indexed: 3\r\nChunks created: 15\r\nTime taken: 1.2 seconds\r\nSpeed: 2.5 files/second\r\n✅ Indexed 3 files in 1.2s\r\n Created 15 chunks\r\n"]
[12.147527, "o", " Speed: 2.5 files/sec\r\n\r\n💡 CLI equivalent: rag-mini index ./demo-project\r\n"]
[14.147607, "o", "\u001b[H\u001b[2J╔════════════════════════════════════════════════════╗\r\n║ FSS-Mini-RAG TUI ║\r\n║ Semantic Code Search Interface ║\r\n╚════════════════════════════════════════════════════╝\r\n\r\n🔍 Search Project\r\n=================\r\n\r\nE"]
[14.227716, "o", "n"]
[14.307806, "o", "t"]
[14.387892, "o", "e"]
[14.468085, "o", "r"]
[14.548197, "o", " "]
[14.628255, "o", "s"]
[14.708446, "o", "e"]
[14.788519, "o", "a"]
[14.86859, "o", "r"]
[14.94868, "o", "c"]
[15.02873, "o", "h"]
[15.108879, "o", " "]
[15.188919, "o", "q"]
[15.269002, "o", "u"]
[15.349108, "o", "e"]
[15.429214, "o", "r"]
[15.509323, "o", "y"]
[15.589404, "o", ":"]
[15.66948, "o", " "]
[15.749622, "o", "\""]
[15.829711, "o", "u"]
[15.909904, "o", "s"]
[15.990037, "o", "e"]
[16.070093, "o", "r"]
[16.150185, "o", " "]
[16.230262, "o", "a"]
[16.310347, "o", "u"]
[16.390448, "o", "t"]
[16.470554, "o", "h"]
[16.550682, "o", "e"]
[16.630812, "o", "n"]
[16.710895, "o", "t"]
[16.791063, "o", "i"]
[16.871124, "o", "c"]
[16.9512, "o", "a"]
[17.031378, "o", "t"]
[17.111425, "o", "i"]
[17.191534, "o", "o"]
[17.27162, "o", "n"]
[17.351674, "o", "\""]
[17.431755, "o", "\r\n"]
[18.231819, "o", "\r\n🔍 Searching \"user authentication\" in demo-project\r\n"]
[18.731954, "o", "✅ Found 3 results:\r\n\r\n📄 Result 1 (Score: 0.94)\r\n File: auth.py\r\n Function: AuthManager.login()\r\n Preview: Authenticate user and create session...\r\n\r\n"]
[19.132078, "o", "📄 Result 2 (Score: 0.87)\r\n File: auth.py\r\n Function: validate_password()\r\n Preview: Validate user password against stored hash...\r\n\r\n"]
[19.532193, "o", "📄 Result 3 (Score: 0.82)\r\n File: api_endpoints.py\r\n Function: login_endpoint()\r\n Preview: Handle user login requests...\r\n\r\n"]
[19.932399, "o", "💡 CLI equivalent: rag-mini search ./demo-project \"user authentication\"\r\n"]
[22.432404, "o", "\u001b[H\u001b[2J╔════════════════════════════════════════════════════╗\r\n║ FSS-Mini-RAG TUI ║\r\n║ Semantic Code Search Interface ║\r\n╚════════════════════════════════════════════════════╝\r\n\r\n🖥 CLI Command Reference\r\n=========================\r\n\r\nWhat you just did in the TUI:\r\n\r\n1⃣ Select & Index Project:\r\n rag-mini index ./demo-project\r\n\r\n2⃣ Search Project:\r\n rag-mini search ./demo-project \"user authentication\"\r\n\r\n3⃣ Check Status:\r\n rag-mini status ./demo-project\r\n\r\n🚀 You can now use these commands directly!\r\n No TUI required for power users.\r\n"]
[25.432541, "o", "\u001b[H\u001b[2J🎉 Demo Complete!\r\n\r\nFSS-Mini-RAG: Semantic code search that actually works\r\nCopy the folder, run ./rag-mini, and start searching!\r\n\r\n"]
[25.432566, "o", "Ready to try it yourself? 🚀\r\n"]

View File

@ -1,159 +0,0 @@
{"version": 2, "width": 80, "height": 24, "timestamp": 1754978845, "env": {"SHELL": "/bin/bash", "TERM": "xterm-256color"}, "title": "FSS-Mini-RAG Demo"}
[0.015536, "o", "🎬 Starting FSS-Mini-RAG Demo...\r\n"]
[1.015647, "o", "\u001b[H\u001b[2J╔════════════════════════════════════════════════════╗\r\n║ FSS-Mini-RAG TUI ║\r\n║ Semantic Code Search Interface ║\r\n╚════════════════════════════════════════════════════╝\r\n\r\n🎯 Main Menu\r\n============\r\n\r\n1. Select project directory\r\n2. Index project for search\r\n3. Search project\r\n4. View status\r\n5. Configuration\r\n6. CLI command reference\r\n7. Exit\r\n\r\n"]
[1.015677, "o", "💡 All these actions can be done via CLI commands\r\n You'll see the commands as you use this interface!\r\n\r\n"]
[2.515794, "o", "S"]
[2.615858, "o", "e"]
[2.715935, "o", "l"]
[2.816024, "o", "e"]
[2.916114, "o", "c"]
[3.016158, "o", "t"]
[3.116283, "o", " "]
[3.216374, "o", "o"]
[3.316437, "o", "p"]
[3.416481, "o", "t"]
[3.516581, "o", "i"]
[3.616645, "o", "o"]
[3.716723, "o", "n"]
[3.816825, "o", " "]
[3.916927, "o", "("]
[4.017018, "o", "n"]
[4.117099, "o", "u"]
[4.21714, "o", "m"]
[4.317268, "o", "b"]
[4.417361, "o", "e"]
[4.517484, "o", "r"]
[4.617581, "o", ")"]
[4.717628, "o", ":"]
[4.81779, "o", " "]
[4.917898, "o", "1"]
[5.017968, "o", "\r\n"]
[5.518185, "o", "\r\n📁 Select Project Directory\r\n===========================\r\n\r\nE"]
[5.598297, "o", "n"]
[5.678398, "o", "t"]
[5.758446, "o", "e"]
[5.838519, "o", "r"]
[5.918585, "o", " "]
[5.998741, "o", "p"]
[6.078775, "o", "r"]
[6.15888, "o", "o"]
[6.239024, "o", "j"]
[6.319097, "o", "e"]
[6.399191, "o", "c"]
[6.479278, "o", "t"]
[6.559661, "o", " "]
[6.639696, "o", "p"]
[6.719749, "o", "a"]
[6.799804, "o", "t"]
[6.880025, "o", "h"]
[6.960068, "o", ":"]
[7.040162, "o", " "]
[7.120233, "o", "."]
[7.200351, "o", "/"]
[7.280471, "o", "d"]
[7.360517, "o", "e"]
[7.440595, "o", "m"]
[7.520717, "o", "o"]
[7.600766, "o", "-"]
[7.680887, "o", "p"]
[7.760976, "o", "r"]
[7.841115, "o", "o"]
[7.921142, "o", "j"]
[8.001248, "o", "e"]
[8.081341, "o", "c"]
[8.161404, "o", "t"]
[8.24149, "o", "\r\n"]
[9.041595, "o", "\r\n✅ Selected: ./demo-project\r\n\r\n💡 CLI equivalent: rag-mini index ./demo-project\r\n"]
[10.541712, "o", "\u001b[H\u001b[2J╔════════════════════════════════════════════════════╗\r\n║ FSS-Mini-RAG TUI ║\r\n║ Semantic Code Search Interface ║\r\n╚════════════════════════════════════════════════════╝\r\n\r\n🚀 Indexing demo-project\r\n========================\r\n\r\nFound 12 files to index\r\n\r\n Indexing files... ━"]
[10.571809, "o", " 0%\r Indexing files... ━━"]
[10.601868, "o", "━"]
[10.63194, "o", "━"]
[10.662039, "o", "━"]
[10.69213, "o", "━"]
[10.722192, "o", "━"]
[10.752254, "o", "━"]
[10.782372, "o", "━"]
[10.812432, "o", " 20%\r Indexing files... ━━━━━━━━━━"]
[10.842496, "o", "━"]
[10.872556, "o", "━"]
[10.902696, "o", "━"]
[10.932769, "o", "━"]
[10.962863, "o", "━"]
[10.992948, "o", "━"]
[11.023012, "o", "━"]
[11.053126, "o", " 40%\r Indexing files... ━━━━━━━━━━━━━━━━━━"]
[11.083248, "o", "━"]
[11.113398, "o", "━"]
[11.143448, "o", "━"]
[11.173507, "o", "━"]
[11.20356, "o", "━"]
[11.233652, "o", "━"]
[11.263763, "o", "━"]
[11.293809, "o", " 60%\r Indexing files... ━━━━━━━━━━━━━━━━━━━━━━━━━━"]
[11.323887, "o", "━"]
[11.35399, "o", "━"]
[11.384072, "o", "━"]
[11.414106, "o", "━"]
[11.444202, "o", "━"]
[11.474278, "o", "━"]
[11.504403, "o", "━"]
[11.534498, "o", " 80%\r Indexing files... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"]
[11.564579, "o", "━"]
[11.594684, "o", "━"]
[11.624734, "o", "━"]
[11.65481, "o", "━"]
[11.684897, "o", "━"]
[11.714957, "o", "━"]
[11.745039, "o", " 100%\r\n\r\n Added 58 chunks to database\r\n\r\nIndexing Complete!\r\nFiles indexed: 12\r\nChunks created: 58\r\nTime taken: 2.8 seconds\r\nSpeed: 4.3 files/second\r\n✅ Indexed 12 files in 2.8s\r\n Created 58 chunks\r\n Speed: 4.3 files/sec\r\n\r\n💡 CLI equivalent: rag-mini index ./demo-project\r\n"]
[13.745217, "o", "\u001b[H\u001b[2J╔════════════════════════════════════════════════════╗\r\n║ FSS-Mini-RAG TUI ║\r\n║ Semantic Code Search Interface ║\r\n╚════════════════════════════════════════════════════╝\r\n\r\n🔍 Search Project\r\n=================\r\n\r\nE"]
[13.825321, "o", "n"]
[13.905372, "o", "t"]
[13.985522, "o", "e"]
[14.065577, "o", "r"]
[14.145662, "o", " "]
[14.225768, "o", "s"]
[14.305852, "o", "e"]
[14.385886, "o", "a"]
[14.466009, "o", "r"]
[14.546098, "o", "c"]
[14.626209, "o", "h"]
[14.70667, "o", " "]
[14.786725, "o", "q"]
[14.866843, "o", "u"]
[14.94689, "o", "e"]
[15.026967, "o", "r"]
[15.10708, "o", "y"]
[15.187177, "o", ":"]
[15.267231, "o", " "]
[15.347303, "o", "\""]
[15.42742, "o", "u"]
[15.50754, "o", "s"]
[15.587606, "o", "e"]
[15.667704, "o", "r"]
[15.747799, "o", " "]
[15.827857, "o", "a"]
[15.907923, "o", "u"]
[15.988102, "o", "t"]
[16.068153, "o", "h"]
[16.148225, "o", "e"]
[16.228302, "o", "n"]
[16.308376, "o", "t"]
[16.388478, "o", "i"]
[16.468504, "o", "c"]
[16.549018, "o", "a"]
[16.629121, "o", "t"]
[16.709188, "o", "i"]
[16.789251, "o", "o"]
[16.869337, "o", "n"]
[16.949464, "o", "\""]
[17.029541, "o", "\r\n"]
[17.829668, "o", "\r\n🔍 Searching \"user authentication\" in demo-project\r\n"]
[18.329754, "o", "✅ Found 8 results:\r\n\r\n📄 Result 1 (Score: 0.94)\r\n File: auth/manager.py\r\n Function: AuthManager.login()\r\n Preview: Authenticate user and create session.\r\n"]
[18.32978, "o", " Validates credentials against database and\r\n returns session token on success.\r\n\r\n"]
[18.929899, "o", "📄 Result 2 (Score: 0.91)\r\n File: auth/validators.py\r\n Function: validate_password()\r\n Preview: Validate user password against stored hash.\r\n Supports bcrypt, scrypt, and argon2 hashing.\r\n Includes timing attack protection.\r\n\r\n"]
[19.530068, "o", "📄 Result 3 (Score: 0.88)\r\n File: middleware/auth.py\r\n Function: require_authentication()\r\n Preview: Authentication middleware decorator.\r\n Checks session tokens and JWT validity.\r\n Redirects to login on authentication failure.\r\n\r\n"]
[20.130149, "o", "📄 Result 4 (Score: 0.85)\r\n File: api/endpoints.py\r\n Function: login_endpoint()\r\n Preview: Handle user login API requests.\r\n Accepts JSON credentials, validates input,\r\n and returns authentication tokens.\r\n\r\n"]
[20.730301, "o", "📄 Result 5 (Score: 0.82)\r\n File: models/user.py\r\n Function: User.authenticate()\r\n Preview: User model authentication method.\r\n Queries database for user credentials\r\n and handles account status checks.\r\n\r\n"]
[21.330399, "o", "💡 CLI equivalent: rag-mini search ./demo-project \"user authentication\"\r\n"]
[23.830568, "o", "\u001b[H\u001b[2J╔════════════════════════════════════════════════════╗\r\n║ FSS-Mini-RAG TUI ║\r\n║ Semantic Code Search Interface ║\r\n╚════════════════════════════════════════════════════╝\r\n\r\n🖥 CLI Command Reference\r\n=========================\r\n\r\nWhat you just did in the TUI:\r\n\r\n1⃣ Select & Index Project:\r\n rag-mini index ./demo-project\r\n # Indexed 12 files → 58 semantic chunks\r\n\r\n2⃣ Search Project:\r\n rag-mini search ./demo-project \"user authentication\"\r\n # Found 8 relevant matches with context\r\n\r\n3⃣ Check Status:\r\n rag-mini status ./demo-project\r\n\r\n🚀 You can now use these commands directly!\r\n No TUI required for power users.\r\n\r\n💡 Try semantic queries like:\r\n • \"error handling\" • \"database queries\"\r\n • \"API validation\" • \"configuration management\"\r\n"]
[26.830711, "o", "\u001b[H\u001b[2J🎉 Demo Complete!\r\n\r\nFSS-Mini-RAG: Semantic code search that actually works\r\nCopy the folder, run ./rag-mini, and start searching!\r\n\r\nReady to try it yourself? 🚀\r\n"]

Binary file not shown.

Before

Width:  |  Height:  |  Size: 185 KiB

View File

@ -1,94 +0,0 @@
{"version": 2, "width": 80, "height": 24, "timestamp": 1754979250, "env": {"SHELL": "/bin/bash", "TERM": "xterm-256color"}, "title": "FSS-Mini-RAG Demo"}
[0.011606, "o", "🎬 Starting FSS-Mini-RAG Demo...\r\n"]
[1.01176, "o", "\u001b[H\u001b[2J╔════════════════════════════════════════════════════╗\r\n║ FSS-Mini-RAG TUI ║\r\n║ Semantic Code Search Interface ║\r\n╚════════════════════════════════════════════════════╝\r\n\r\n🎯 Main Menu\r\n============\r\n\r\n1. Select project directory\r\n2. Index project for search\r\n3. Search project\r\n4. View status\r\n5. Configuration\r\n6. CLI command reference\r\n7. Exit\r\n\r\n💡 All these actions can be done via CLI commands\r\n You'll see the commands as you use this interface!\r\n\r\n"]
[2.511829, "o", "Select option (number): 1"]
[2.661937, "o", "\r\n"]
[3.16208, "o", "\r\n📁 Select Project Directory\r\n===========================\r\n\r\nProject path: ."]
[3.242164, "o", "/"]
[3.322277, "o", "d"]
[3.402373, "o", "e"]
[3.48261, "o", "m"]
[3.562708, "o", "o"]
[3.642797, "o", "-"]
[3.722867, "o", "p"]
[3.802932, "o", "r"]
[3.883013, "o", "o"]
[3.963122, "o", "j"]
[4.043202, "o", "e"]
[4.123291, "o", "c"]
[4.203361, "o", "t"]
[4.283471, "o", "\r\n"]
[5.083558, "o", "\r\n✅ Selected: ./demo-project\r\n\r\n💡 CLI equivalent: rag-mini index ./demo-project\r\n"]
[6.58369, "o", "\u001b[H\u001b[2J╔════════════════════════════════════════════════════╗\r\n║ FSS-Mini-RAG TUI ║\r\n║ Semantic Code Search Interface ║\r\n╚════════════════════════════════════════════════════╝\r\n\r\n🚀 Indexing demo-project\r\n========================\r\n\r\nFound 12 files to index\r\n\r\n Indexing files... ━"]
[6.613858, "o", " 0%\r Indexing files... ━━"]
[6.643906, "o", "━"]
[6.673988, "o", "━"]
[6.704055, "o", "━"]
[6.734194, "o", "━"]
[6.764295, "o", "━"]
[6.794336, "o", "━"]
[6.824396, "o", "━"]
[6.854486, "o", " 20%\r Indexing files... ━━━━━━━━━━"]
[6.884556, "o", "━"]
[6.914641, "o", "━"]
[6.944706, "o", "━"]
[6.974775, "o", "━"]
[7.004943, "o", "━"]
[7.034989, "o", "━"]
[7.065051, "o", "━"]
[7.095135, "o", " 40%\r Indexing files... ━━━━━━━━━━━━━━━━━━"]
[7.125215, "o", "━"]
[7.155357, "o", "━"]
[7.185448, "o", "━"]
[7.215562, "o", "━"]
[7.245655, "o", "━"]
[7.275764, "o", "━"]
[7.305906, "o", "━"]
[7.33605, "o", " 60%\r Indexing files... ━━━━━━━━━━━━━━━━━━━━━━━━━━"]
[7.366182, "o", "━"]
[7.396217, "o", "━"]
[7.426311, "o", "━"]
[7.456404, "o", "━"]
[7.486499, "o", "━"]
[7.516563, "o", "━"]
[7.546637, "o", "━"]
[7.576718, "o", " 80%\r Indexing files... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"]
[7.606811, "o", "━"]
[7.636918, "o", "━"]
[7.667002, "o", "━"]
[7.697063, "o", "━"]
[7.72716, "o", "━"]
[7.757317, "o", "━"]
[7.787329, "o", " 100%\r\n\r\n Added 58 chunks to database\r\n\r\nIndexing Complete!\r\nFiles indexed: 12\r\nChunks created: 58\r\nTime taken: 2.8 seconds\r\nSpeed: 4.3 files/second\r\n✅ Indexed 12 files in 2.8s\r\n Created 58 chunks\r\n Speed: 4.3 files/sec\r\n\r\n💡 CLI equivalent: rag-mini index ./demo-project\r\n"]
[9.787461, "o", "\u001b[H\u001b[2J╔════════════════════════════════════════════════════╗\r\n║ FSS-Mini-RAG TUI ║\r\n║ Semantic Code Search Interface ║\r\n╚════════════════════════════════════════════════════╝\r\n\r\n🔍 Search Project\r\n=================\r\n\r\nSearch query: \""]
[9.86757, "o", "u"]
[9.947634, "o", "s"]
[10.027763, "o", "e"]
[10.107854, "o", "r"]
[10.187948, "o", " "]
[10.268032, "o", "a"]
[10.348137, "o", "u"]
[10.428233, "o", "t"]
[10.508289, "o", "h"]
[10.588404, "o", "e"]
[10.668488, "o", "n"]
[10.748564, "o", "t"]
[10.828606, "o", "i"]
[10.908678, "o", "c"]
[10.988754, "o", "a"]
[11.068836, "o", "t"]
[11.148986, "o", "i"]
[11.229091, "o", "o"]
[11.309143, "o", "n"]
[11.389238, "o", "\""]
[11.469342, "o", "\r\n"]
[12.269425, "o", "\r\n🔍 Searching \"user authentication\" in demo-project\r\n"]
[12.76953, "o", "✅ Found 8 results:\r\n\r\n📄 Result 1 (Score: 0.94)\r\n File: auth/manager.py\r\n Function: AuthManager.login()\r\n Preview: Authenticate user and create session.\r\n"]
[12.769549, "o", " Validates credentials against database and\r\n returns session token on success.\r\n\r\n"]
[13.369697, "o", "📄 Result 2 (Score: 0.91)\r\n File: auth/validators.py\r\n Function: validate_password()\r\n Preview: Validate user password against stored hash.\r\n Supports bcrypt, scrypt, and argon2 hashing.\r\n Includes timing attack protection.\r\n\r\n"]
[13.969821, "o", "📄 Result 3 (Score: 0.88)\r\n File: middleware/auth.py\r\n Function: require_authentication()\r\n Preview: Authentication middleware decorator.\r\n Checks session tokens and JWT validity.\r\n Redirects to login on authentication failure.\r\n\r\n"]
[14.569938, "o", "📄 Result 4 (Score: 0.85)\r\n File: api/endpoints.py\r\n Function: login_endpoint()\r\n Preview: Handle user login API requests.\r\n Accepts JSON credentials, validates input,\r\n and returns authentication tokens.\r\n\r\n"]
[15.170064, "o", "📄 Result 5 (Score: 0.82)\r\n File: models/user.py\r\n Function: User.authenticate()\r\n Preview: User model authentication method.\r\n Queries database for user credentials\r\n and handles account status checks.\r\n\r\n"]
[15.770453, "o", "💡 CLI equivalent: rag-mini search ./demo-project \"user authentication\"\r\n"]
[18.270591, "o", "\u001b[H\u001b[2J╔════════════════════════════════════════════════════╗\r\n║ FSS-Mini-RAG TUI ║\r\n║ Semantic Code Search Interface ║\r\n╚════════════════════════════════════════════════════╝\r\n\r\n🖥 CLI Command Reference\r\n=========================\r\n\r\nWhat you just did in the TUI:\r\n\r\n1⃣ Select & Index Project:\r\n rag-mini index ./demo-project\r\n # Indexed 12 files → 58 semantic chunks\r\n\r\n2⃣ Search Project:\r\n rag-mini search ./demo-project \"user authentication\"\r\n # Found 8 relevant matches with context\r\n\r\n3⃣ Check Status:\r\n rag-mini status ./demo-project\r\n\r\n🚀 You can now use these commands directly!\r\n No TUI required for power users.\r\n\r\n💡 Try semantic queries like:\r\n • \"error handling\" • \"database queries\"\r\n • \"API validation\" • \"configuration management\"\r\n"]
[21.270814, "o", "\u001b[H\u001b[2J🎉 Demo Complete!\r\n\r\nFSS-Mini-RAG: Semantic code search that actually works\r\nCopy the folder, run ./rag-mini, and start searching!\r\n\r\nReady to try it yourself? 🚀\r\n"]

Binary file not shown.

Before

Width:  |  Height:  |  Size: 179 KiB

View File

@ -1,265 +0,0 @@
# RAG System Comprehensive Analysis
## Dual-Perspective Synthesis Report
### Executive Summary
After comprehensive analysis from both beginner (Emma) and expert (Michael) perspectives, this RAG system emerges as an **exceptional educational tool** that successfully balances accessibility with technical sophistication. The system achieves a rare feat: being genuinely useful for beginners while maintaining production-quality architecture patterns.
**Overall Assessment: 8.7/10** - Outstanding educational project with production potential
---
## Convergent Findings: Where Both Perspectives Align
### 🌟 **Universal Strengths**
**Educational Excellence** ✅
Both analysts praised the progressive complexity design:
- **Emma**: "Brilliant educational approach! TUI shows CLI commands as you use it"
- **Michael**: "Educational excellence - best-in-class for learning RAG concepts"
**Robust Architecture** ✅
Both recognized the solid engineering foundation:
- **Emma**: "Smart fallback system - Ollama → ML models → Hash means it always works"
- **Michael**: "Multi-tier fallback system prevents system failure when components unavailable"
**Clear Code Organization** ✅
Both appreciated the modular design:
- **Emma**: "Single responsibility - each file does one main thing"
- **Michael**: "Clean separation of concerns with interface-driven design"
**Production-Ready Error Handling** ✅
Both noted comprehensive error management:
- **Emma**: "Clear error messages include suggested solutions"
- **Michael**: "Graceful fallbacks for every external dependency"
### ⚠️ **Shared Concerns**
**Configuration Complexity** ❌
Both found configuration overwhelming:
- **Emma**: "6 different configuration classes - overwhelming for beginners"
- **Michael**: "Nested dataclass configuration is verbose and hard to extend"
**Technical Jargon Barriers** ❌
Both noted explanation gaps:
- **Emma**: "Embeddings used everywhere but never explained in simple terms"
- **Michael**: "Missing beginner glossary for core concepts"
**Scalability Questions** ❌
Both raised scaling concerns:
- **Emma**: "Memory usage could spike with very large codebases"
- **Michael**: "Single-process architecture may become bottleneck at >50k files"
---
## Divergent Insights: Where Perspectives Differ
### Technical Implementation Assessment
**Emma's Beginner View:**
- Sees complexity as intimidating barriers to entry
- Focuses on what makes learning difficult vs. easy
- Values simplification over sophisticated features
- Concerned about overwhelming new users
**Michael's Expert View:**
- Appreciates architectural sophistication
- Evaluates production readiness and scalability
- Values technical depth and implementation quality
- Focused on enterprise concerns and maintainability
### Key Perspective Splits
| Aspect | Emma (Beginner) | Michael (Expert) |
|--------|----------------|------------------|
| **Configuration** | "Too many options, overwhelming" | "Verbose but well-structured" |
| **Fallback Logic** | "Complex but works reliably" | "Sophisticated error recovery" |
| **Code Comments** | "Need more explanation" | "Good documentation coverage" |
| **Architecture** | "Hard to follow threading" | "Clean modular design" |
| **Error Handling** | "Try/catch blocks confusing" | "Comprehensive exception handling" |
---
## Synthesis Assessment by Use Case
### 🎓 **For Learning/Educational Use**
**Rating: 9.5/10**
**Strengths:**
- Progressive disclosure from TUI → CLI → Python API
- Real production patterns without oversimplification
- Working examples that actually demonstrate concepts
- Multiple entry points for different comfort levels
**Recommendations:**
1. Add beginner glossary explaining RAG, embeddings, chunking in plain English
2. Create configuration presets: "simple", "advanced", "production"
3. Add visual guide with TUI screenshots
4. Include troubleshooting FAQ with common issues
### 🏢 **For Production Use**
**Rating: 7.5/10**
**Strengths:**
- Solid architectural foundation with proper patterns
- Comprehensive error handling and graceful degradation
- Performance optimizations (hybrid search, caching)
- Clean, maintainable codebase
**Limitations:**
- Single-process architecture limits scalability
- Missing enterprise features (auth, monitoring, containers)
- Thread safety concerns in high-concurrency scenarios
- No database abstraction layer
**Recommendations:**
1. Add containerization and deployment configs
2. Implement structured logging and metrics
3. Add authentication/authorization layer
4. Create database abstraction for vector store switching
### 🛠 **For Development/Experimentation**
**Rating: 9.0/10**
**Strengths:**
- Easy to modify and extend
- Clear extension points and plugin architecture
- Good debugging capabilities
- Multiple embedding fallbacks for reliability
**Perfect For:**
- RAG concept experimentation
- Custom chunking algorithm development
- Embedding model comparisons
- Local development workflows
---
## Critical Success Factors
### What Makes This System Exceptional
**1. Educational Design Philosophy**
Unlike most RAG tutorials that are too simple or enterprise systems that are too complex, this system:
- Uses real production patterns
- Maintains approachability for beginners
- Provides multiple complexity levels
- Includes working, non-trivial examples
**2. Engineering Maturity**
- Proper error handling with specific exception types
- Graceful degradation across all components
- Performance optimizations (hybrid search, caching)
- Clean separation of concerns
**3. Practical Usability**
- Works out of the box with sensible defaults
- Multiple interfaces for different user types
- Comprehensive fallback systems
- Clear status reporting and debugging info
### Critical Weaknesses to Address
**1. Documentation Gap**
- Missing beginner glossary for technical terms
- No architectural overview for developers
- Limited troubleshooting guidance
- Few usage examples beyond basic case
**2. Configuration Complexity**
- Too many options without clear guidance
- No preset configurations for common use cases
- Runtime configuration validation missing
- Complex option interdependencies
**3. Scalability Architecture**
- Single-process threading model
- No distributed processing capabilities
- Memory usage concerns for large projects
- Limited concurrent user support
---
## Strategic Recommendations
### Immediate Improvements (High Impact, Low Effort)
**1. Documentation Enhancement**
```markdown
- Add beginner glossary (RAG, embeddings, chunks, vectors)
- Create configuration presets (simple/advanced/production)
- Add troubleshooting FAQ
- Include TUI screenshots and visual guide
```
**2. Configuration Simplification**
```python
# Add preset configurations
config = RAGConfig.preset("beginner") # Minimal options
config = RAGConfig.preset("production") # Optimized defaults
```
**3. Better Error Messages**
```python
# More contextual error messages
"❌ Ollama not available. Falling back to lightweight embeddings.
To use full features: brew install ollama && ollama serve"
```
### Medium-Term Enhancements
**1. Enterprise Features**
- Add structured logging (JSON format)
- Implement metrics export (Prometheus)
- Create Docker containers
- Add basic authentication layer
**2. Performance Optimization**
- Database abstraction layer
- Connection pooling improvements
- Memory usage optimization
- Batch processing enhancements
**3. Developer Experience**
- Plugin architecture documentation
- Extension examples
- Development setup guide
- Contribution guidelines
### Long-Term Evolution
**1. Scalability Architecture**
- Multi-process architecture option
- Distributed processing capabilities
- Horizontal scaling support
- Load balancing integration
**2. Advanced Features**
- Real-time collaboration support
- Advanced query processing
- Custom model integration
- Enterprise security features
---
## Final Verdict
This RAG system represents a **remarkable achievement** in educational software engineering. It successfully demonstrates that production-quality software can be accessible to beginners without sacrificing technical sophistication.
### Key Success Metrics:
- ✅ **Beginner Accessibility**: 8/10 (needs documentation improvements)
- ✅ **Technical Quality**: 9/10 (excellent architecture and implementation)
- ✅ **Educational Value**: 10/10 (outstanding progressive complexity)
- ✅ **Production Viability**: 7/10 (solid foundation, needs enterprise features)
### Primary Use Cases:
1. **Educational Tool**: Perfect for learning RAG concepts
2. **Development Platform**: Excellent for experimentation and prototyping
3. **Production Foundation**: Strong base requiring additional hardening
### Bottom Line:
**This system achieves the rare balance of being genuinely educational while maintaining production-quality patterns.** With targeted improvements in documentation and configuration simplification, it could become the gold standard for RAG educational resources.
The convergent praise from both beginner and expert perspectives validates the fundamental design decisions, while the divergent concerns provide a clear roadmap for enhancement priorities.
**Recommendation: Highly suitable for educational use, excellent foundation for production development, needs targeted improvements for enterprise deployment.**

View File

@ -1,184 +0,0 @@
# RAG System Codebase Analysis - Beginner's Perspective
## What I Found **GOOD** 📈
### **Clear Entry Points and Documentation**
- **README.md**: Excellent start! The mermaid diagram showing "Files → Index → Chunks → Embeddings → Database" makes the flow crystal clear
- **GET_STARTED.md**: Perfect 2-minute quick start guide - exactly what beginners need
- **Multiple entry points**: The three different ways to use it (`./rag-tui`, `./rag-mini`, `./install_mini_rag.sh`) gives options for different comfort levels
### **Beginner-Friendly Design Philosophy**
- **TUI (Text User Interface)**: The `rag-tui.py` shows CLI commands as you use the interface - brilliant educational approach!
- **Progressive complexity**: You can start simple with the TUI, then graduate to CLI commands
- **Helpful error messages**: In `rag-mini.py`, errors like "❌ Project not indexed" include the solution: "Run: rag-mini index /path/to/project"
### **Excellent Code Organization**
- **Clean module structure**: `mini_rag/` contains all the core code with logical names like `chunker.py`, `search.py`, `indexer.py`
- **Single responsibility**: Each file does one main thing - the chunker chunks, the searcher searches, etc.
- **Good naming**: Functions like `index_project()`, `search_project()`, `status_check()` are self-explanatory
### **Smart Fallback System**
- **Multiple embedding options**: Ollama → ML models → Hash-based fallbacks means it always works
- **Clear status reporting**: Shows which system is active: "✅ Ollama embeddings active" or "⚠️ Using hash-based embeddings"
### **Educational Examples**
- **`examples/basic_usage.py`**: Perfect beginner example showing step-by-step usage
- **Test files**: Like `tests/01_basic_integration_test.py` that create sample code and show how everything works together
- **Configuration examples**: The YAML config in `examples/config.yaml` has helpful comments explaining each setting
## What Could Use **IMPROVEMENT** 📝
### **Configuration Complexity**
- **Too many options**: The `config.py` file has 6 different configuration classes (ChunkingConfig, StreamingConfig, etc.) - overwhelming for beginners
- **YAML complexity**: The config file has lots of technical terms like "threshold_bytes", "similarity_threshold" without beginner explanations
- **Default confusion**: Hard to know which settings to change as a beginner
### **Technical Jargon Without Explanation**
- **"Embeddings"**: Used everywhere but never explained in simple terms
- **"Vector database"**: Mentioned but not explained what it actually does
- **"Chunking strategy"**: Options like "semantic" vs "fixed" need plain English explanations
- **"BM25"**, **"similarity_threshold"**: Very technical terms without context
### **Complex Installation Options**
- **Three different installation methods**: The README shows experimental copy & run, full installation, AND manual setup - confusing which to pick
- **Ollama dependency**: Not clear what Ollama actually is or why you need it
- **Requirements confusion**: Two different requirements files (`requirements.txt` and `requirements-full.txt`)
### **Code Complexity in Core Modules**
- **`ollama_embeddings.py`**: 200+ lines with complex fallback logic - hard to understand the flow
- **`llm_synthesizer.py`**: Model selection logic with long lists of model rankings - overwhelming
- **Error handling**: Lots of try/catch blocks without explaining what could go wrong and why
### **Documentation Gaps**
- **Missing beginner glossary**: No simple definitions of key terms
- **No troubleshooting guide**: What to do when things don't work
- **Limited examples**: Only one basic usage example, need more scenarios
- **No visual guide**: Could use screenshots or diagrams of what the TUI looks like
## What I Found **EASY**
### **Getting Started Flow**
- **Installation script**: `./install_mini_rag.sh` handles everything automatically
- **TUI interface**: Menu-driven, no need to memorize commands
- **Basic CLI commands**: `./rag-mini index /path` and `./rag-mini search /path "query"` are intuitive
### **Project Structure**
- **Logical file organization**: Everything related to chunking is in `chunker.py`, search stuff in `search.py`
- **Clear entry points**: `rag-mini.py` and `rag-tui.py` are obvious starting points
- **Documentation location**: All docs in `docs/` folder, examples in `examples/`
### **Configuration Files**
- **YAML format**: Much easier than JSON or code-based config
- **Comments in config**: The example config has helpful explanations
- **Default values**: Works out of the box without any configuration
### **Basic Usage Pattern**
- **Index first, then search**: Clear two-step process
- **Consistent commands**: All CLI commands follow the same pattern
- **Status checking**: `./rag-mini status /path` shows what's happening
## What I Found **HARD** 😰
### **Understanding the Core Concepts**
- **What is RAG?**: The acronym is never explained in beginner terms
- **How embeddings work**: The system creates "768-dimension vectors" - what does that even mean?
- **Why chunking matters**: Not clear why text needs to be split up at all
- **Vector similarity**: How does the system actually find relevant results?
### **Complex Configuration Options**
- **Embedding methods**: "ollama", "ml", "hash", "auto" - which one should I use?
- **Chunking strategies**: "semantic" vs "fixed" - no clear guidance on when to use which
- **Model selection**: In `llm_synthesizer.py`, there's a huge list of model names like "qwen2.5:1.5b" - how do I know what's good?
### **Error Debugging**
- **Dependency issues**: If Ollama isn't installed, error messages assume I know what Ollama is
- **Import errors**: Complex fallback logic means errors could come from many places
- **Performance problems**: No guidance on what to do if indexing is slow or search results are poor
### **Advanced Features**
- **LLM synthesis**: The `--synthesize` flag does something but it's not clear what or when to use it
- **Query expansion**: Happens automatically but no explanation of why or how to control it
- **Streaming mode**: For large files but no guidance on when it matters
### **Code Architecture**
- **Multiple inheritance**: Classes inherit from each other in complex ways
- **Async patterns**: Some threading and concurrent processing that's hard to follow
- **Caching logic**: Complex caching systems in multiple places
## What Might Work or Might Not Work ⚖️
### **Features That Seem Well-Implemented**
#### **Fallback System**
- **Multiple backup options**: Ollama → ML → Hash means it should always work
- **Clear status reporting**: System tells you which method is active
- **Graceful degradation**: Falls back to simpler methods if complex ones fail
#### **Error Handling**
- **Input validation**: Checks if paths exist, handles missing files gracefully
- **Clear error messages**: Most errors include suggested solutions
- **Safe defaults**: System works out of the box without configuration
#### **Multi-Interface Design**
- **TUI for beginners**: Menu-driven interface with help
- **CLI for power users**: Direct commands for efficiency
- **Python API**: Can be integrated into other tools
### **Features That Look Questionable** ⚠️
#### **Complex Model Selection Logic**
- **Too many options**: 20+ different model preferences in `llm_synthesizer.py`
- **Auto-selection might fail**: Complex ranking logic could pick wrong model
- **No fallback validation**: If model selection fails, unclear what happens
#### **Caching Strategy**
- **Multiple cache layers**: Query expansion cache, embedding cache, search cache
- **No cache management**: No clear way to clear or manage cache size
- **Potential memory issues**: Caches could grow large over time
#### **Configuration Complexity**
- **Too many knobs**: 20+ configuration options across 6 different sections
- **Unclear interactions**: Changing one setting might affect others in unexpected ways
- **No validation**: System might accept invalid configurations
### **Areas of Uncertainty**
#### **Performance and Scalability**
- **Large project handling**: Streaming mode exists but unclear when it kicks in
- **Memory usage**: No guidance on memory requirements for different project sizes
- **Concurrent usage**: Multiple users or processes might conflict
#### **AI Model Dependencies**
- **Ollama reliability**: Heavy dependence on external Ollama service
- **Model availability**: Code references specific models that might not exist
- **Version compatibility**: No clear versioning strategy for AI models
#### **Cross-Platform Support**
- **Windows compatibility**: Some shell scripts and path handling might not work
- **Python version requirements**: Claims Python 3.8+ but some features might need newer versions
- **Dependency conflicts**: Complex ML dependencies could have version conflicts
## **Summary Assessment** 🎯
This is a **well-architected system with excellent educational intent**, but it suffers from **complexity creep** that makes it intimidating for true beginners.
### **Strengths for Beginners:**
- Excellent progressive disclosure from TUI to CLI to Python API
- Good documentation structure and helpful error messages
- Smart fallback systems ensure it works in most environments
- Clear, logical code organization
### **Main Barriers for Beginners:**
- Too much technical jargon without explanation
- Configuration options are overwhelming
- Core concepts (embeddings, vectors, chunking) not explained in simple terms
- Installation has too many paths and options
### **Recommendations:**
1. **Add a glossary** explaining RAG, embeddings, chunking, vectors in plain English
2. **Simplify configuration** with "beginner", "intermediate", "advanced" presets
3. **More examples** showing different use cases and project types
4. **Visual guide** with screenshots of the TUI and expected outputs
5. **Troubleshooting section** with common problems and solutions
The foundation is excellent - this just needs some beginner-focused documentation and simplification to reach its educational potential.

View File

@ -1,322 +0,0 @@
# FSS-Mini-RAG Technical Analysis
## Experienced Developer's Assessment
### Executive Summary
This is a **well-architected, production-ready RAG system** that successfully bridges the gap between oversimplified tutorials and enterprise-complexity implementations. The codebase demonstrates solid engineering practices with a clear focus on educational value without sacrificing technical quality.
**Overall Rating: 8.5/10** - Impressive for an educational project with production aspirations.
---
## What I Found GOOD
### 🏗️ **Excellent Architecture Decisions**
**Modular Design Pattern**
- Clean separation of concerns: `chunker.py`, `indexer.py`, `search.py`, `embedder.py`
- Each module has a single, well-defined responsibility
- Proper dependency injection throughout (e.g., `ProjectIndexer` accepts optional `embedder` and `chunker`)
- Interface-driven design allows easy testing and extension
**Robust Embedding Strategy**
- **Multi-tier fallback system**: Ollama → ML models → Hash-based embeddings
- Graceful degradation prevents system failure when components are unavailable
- Smart model selection with performance rankings (`qwen3:0.6b` first for CPU efficiency)
- Caching and connection pooling for performance
**Advanced Chunking Algorithm**
- **AST-based chunking for Python** - preserves semantic boundaries
- Language-aware parsing for JavaScript, Go, Java, Markdown
- Smart size constraints with overflow handling
- Metadata tracking (parent class, next/previous chunks, file context)
### 🚀 **Production-Ready Features**
**Streaming Architecture**
- Large file processing with configurable thresholds (1MB default)
- Memory-efficient batch processing with concurrent embedding
- Queue-based file watching with debouncing and deduplication
**Comprehensive Error Handling**
- Specific exception types with actionable error messages
- Multiple encoding fallbacks (`utf-8``latin-1``cp1252`)
- Database schema validation and automatic migration
- Graceful fallbacks for every external dependency
**Performance Optimizations**
- LanceDB with fixed-dimension vectors for optimal indexing
- Hybrid search combining vector similarity + BM25 keyword matching
- Smart re-ranking with file importance and recency boosts
- Connection pooling and query caching
**Operational Excellence**
- Incremental indexing with file change detection (hash + mtime)
- Comprehensive statistics and monitoring
- Configuration management with YAML validation
- Clean logging with different verbosity levels
### 📚 **Educational Value**
**Code Quality for Learning**
- Extensive documentation and type hints throughout
- Clear variable naming and logical flow
- Educational tests that demonstrate capabilities
- Progressive complexity from basic to advanced features
**Multiple Interface Design**
- CLI for power users
- TUI for beginners (shows CLI commands as you use it)
- Python API for integration
- Server mode for persistent usage
---
## What Could Use IMPROVEMENT
### ⚠️ **Architectural Weaknesses**
**Database Abstraction Missing**
- Direct LanceDB coupling throughout `indexer.py` and `search.py`
- No database interface layer makes switching vector stores difficult
- Schema changes require dropping/recreating entire table
**Configuration Complexity**
- Nested dataclass configuration is verbose and hard to extend
- No runtime configuration validation beyond YAML parsing
- Configuration changes require restart (no hot-reloading)
**Limited Scalability Architecture**
- Single-process design with threading (not multi-process)
- No distributed processing capabilities
- Memory usage could spike with very large codebases
### 🐛 **Code Quality Issues**
**Error Handling Inconsistencies**
```python
# Some functions return None on error, others raise exceptions
# This makes client code error handling unpredictable
try:
records = self._process_file(file_path)
if records: # Could be None or empty list
# Handle success
except Exception as e:
# Also need to handle exceptions
```
**Thread Safety Concerns**
- File watcher uses shared state between threads without proper locking
- LanceDB connection sharing across threads not explicitly handled
- Cache operations in `QueryExpander` may have race conditions
**Testing Coverage Gaps**
- Integration tests exist but limited unit test coverage
- No performance regression tests
- Error path testing is minimal
### 🏗️ **Missing Enterprise Features**
**Security Considerations**
- No input sanitization for search queries
- File path traversal protection could be stronger
- No authentication/authorization for server mode
**Monitoring and Observability**
- Basic logging but no structured logging (JSON)
- No metrics export (Prometheus/StatsD)
- Limited distributed tracing capabilities
**Deployment Support**
- No containerization (Docker)
- No service discovery or load balancing support
- Configuration management for multiple environments
---
## What I Found EASY
### 🎯 **Well-Designed APIs**
**Intuitive Class Interfaces**
```python
# Clean, predictable API design
searcher = CodeSearcher(project_path)
results = searcher.search("authentication logic", top_k=10)
```
**Consistent Method Signatures**
- Similar parameter patterns across classes
- Good defaults that work out of the box
- Optional parameters that don't break existing code
**Clear Extension Points**
- `CodeEmbedder` interface allows custom embedding implementations
- `CodeChunker` can be extended for new languages
- Plugin architecture through configuration
### 📦 **Excellent Abstraction Layers**
**Configuration Management**
- Single `RAGConfig` object handles all settings
- Environment variable support
- Validation with helpful error messages
**Path Handling**
- Consistent normalization across the system
- Cross-platform compatibility
- Proper relative/absolute path handling
---
## What I Found HARD
### 😤 **Complex Implementation Areas**
**Vector Database Schema Management**
```python
# Schema evolution is complex and brittle
if not required_fields.issubset(existing_fields):
logger.warning("Schema mismatch detected. Dropping and recreating table.")
self.db.drop_table("code_vectors") # Loses all data!
```
**Hybrid Search Algorithm**
- Complex scoring calculation combining semantic + BM25 + ranking boosts
- Difficult to tune weights for different use cases
- Performance tuning requires deep understanding of the algorithm
**File Watching Complexity**
- Queue-based processing with batching logic
- Debouncing and deduplication across multiple threads
- Race condition potential between file changes and indexing
### 🧩 **Architectural Complexity**
**Multi-tier Embedding Fallbacks**
- Complex initialization logic across multiple embedding providers
- Model selection heuristics are hard-coded and inflexible
- Error recovery paths are numerous and hard to test comprehensively
**Configuration Hierarchy**
- Multiple configuration sources (YAML, defaults, runtime)
- Precedence rules not always clear
- Validation happens at different levels
---
## What Might Work vs. Might Not Work
### ✅ **Likely to Work Well**
**Small to Medium Projects (< 10k files)**
- Architecture handles this scale efficiently
- Memory usage remains reasonable
- Performance is excellent
**Educational and Development Use**
- Great for learning RAG concepts
- Easy to modify and experiment with
- Good debugging capabilities
**Local Development Workflows**
- File watching works well for active development
- Fast incremental updates
- Good integration with existing tools
### ❓ **Questionable at Scale**
**Very Large Codebases (>50k files)**
- Single-process architecture may become bottleneck
- Memory usage could become problematic
- Indexing time might be excessive
**Production Web Services**
- No built-in rate limiting or request queuing
- Single point of failure design
- Limited monitoring and alerting
**Multi-tenant Environments**
- No isolation between projects
- Resource sharing concerns
- Security isolation gaps
---
## Technical Implementation Assessment
### 📊 **Code Metrics**
- **~12,000 lines** of Python code (excluding tests/docs)
- **Good module size distribution** (largest file: `search.py` at ~780 lines)
- **Reasonable complexity** per function
- **Strong type hint coverage** (~85%+)
### 🔧 **Engineering Practices**
**Version Control & Organization**
- Clean git history with logical commits
- Proper `.gitignore` with RAG-specific entries
- Good directory structure following Python conventions
**Documentation Quality**
- Comprehensive docstrings with examples
- Architecture diagrams and visual guides
- Progressive learning materials
**Dependency Management**
- Minimal, well-chosen dependencies
- Optional dependency handling for fallbacks
- Clear requirements separation
### 🚦 **Performance Characteristics**
**Indexing Performance**
- ~50-100 files/second (reasonable for the architecture)
- Memory usage scales linearly with file size
- Good for incremental updates
**Search Performance**
- Sub-50ms search latency (excellent)
- Vector similarity + keyword hybrid approach works well
- Results quality is good for code search
**Resource Usage**
- Moderate memory footprint (~200MB for 10k files)
- CPU usage spikes during indexing, low during search
- Disk usage reasonable with LanceDB compression
---
## Final Assessment
### 🌟 **Strengths**
1. **Educational Excellence** - Best-in-class for learning RAG concepts
2. **Production Patterns** - Uses real-world engineering practices
3. **Graceful Degradation** - System works even when components fail
4. **Code Quality** - Clean, readable, well-documented codebase
5. **Performance** - Fast search with reasonable resource usage
### ⚠️ **Areas for Production Readiness**
1. **Scalability** - Needs multi-process architecture for large scale
2. **Security** - Add authentication and input validation
3. **Monitoring** - Structured logging and metrics export
4. **Testing** - Expand unit test coverage and error path testing
5. **Deployment** - Add containerization and service management
### 💡 **Recommendations**
**For Learning/Development Use**: **Highly Recommended**
- Excellent starting point for understanding RAG systems
- Easy to modify and experiment with
- Good balance of features and complexity
**For Production Use**: **Proceed with Caution**
- Great for small-medium teams and projects
- Requires additional hardening for enterprise use
- Consider as a foundation, not a complete solution
**Overall Verdict**: This is a **mature, well-engineered educational project** that demonstrates production-quality patterns while remaining accessible to developers learning RAG concepts. It successfully avoids the "too simple to be useful" and "too complex to understand" extremes that plague most RAG implementations.
The codebase shows clear evidence of experienced engineering with attention to error handling, performance, and maintainability. It would serve well as either a learning resource or the foundation for a production RAG system with additional enterprise features.
**Score: 8.5/10** - Excellent work that achieves its stated goals admirably.