Add interactive exploration mode with thinking and context memory

- Create separate explore mode with thinking enabled for debugging/learning
- Add lazy loading with LLM warmup using 'testing, just say "hi" <no_think>'
- Implement context-aware conversation memory across questions
- Add interactive CLI with help, summary, and session management
- Enable Qwen3 thinking mode toggle for experimentation
- Support multi-turn conversations for better debugging workflow
- Clean separation between fast synthesis and deep exploration modes
This commit is contained in:
BobAi 2025-08-12 18:06:08 +10:00
parent 16199375fc
commit a7e3e6f474
6 changed files with 509 additions and 7 deletions

View File

@ -78,6 +78,7 @@ class LLMConfig:
max_expansion_terms: int = 8 # Maximum additional terms to add max_expansion_terms: int = 8 # Maximum additional terms to add
enable_synthesis: bool = False # Enable by default when --synthesize used enable_synthesis: bool = False # Enable by default when --synthesize used
synthesis_temperature: float = 0.3 synthesis_temperature: float = 0.3
enable_thinking: bool = True # Enable thinking mode for Qwen3 models (production: True, testing: toggle)
@dataclass @dataclass

367
claude_rag/explorer.py Normal file
View File

@ -0,0 +1,367 @@
#!/usr/bin/env python3
"""
Interactive Code Explorer with Thinking Mode
Provides multi-turn conversations with context memory for debugging and learning.
Perfect for exploring codebases with detailed reasoning and follow-up questions.
"""
import json
import logging
import time
from typing import List, Dict, Any, Optional
from pathlib import Path
from dataclasses import dataclass
try:
from .llm_synthesizer import LLMSynthesizer, SynthesisResult
from .search import CodeSearcher
from .config import RAGConfig
except ImportError:
# For direct testing
from llm_synthesizer import LLMSynthesizer, SynthesisResult
from search import CodeSearcher
from config import RAGConfig
logger = logging.getLogger(__name__)
@dataclass
class ExplorationSession:
"""Track an exploration session with context history."""
project_path: Path
conversation_history: List[Dict[str, Any]]
session_id: str
started_at: float
def add_exchange(self, question: str, search_results: List[Any], response: SynthesisResult):
"""Add a question/response exchange to the conversation history."""
self.conversation_history.append({
"timestamp": time.time(),
"question": question,
"search_results_count": len(search_results),
"response": {
"summary": response.summary,
"key_points": response.key_points,
"code_examples": response.code_examples,
"suggested_actions": response.suggested_actions,
"confidence": response.confidence
}
})
class CodeExplorer:
"""Interactive code exploration with thinking and context memory."""
def __init__(self, project_path: Path, config: RAGConfig = None):
self.project_path = project_path
self.config = config or RAGConfig()
# Initialize components with thinking enabled
self.searcher = CodeSearcher(project_path)
self.synthesizer = LLMSynthesizer(
ollama_url=f"http://{self.config.llm.ollama_host}",
model=self.config.llm.synthesis_model,
enable_thinking=True # Always enable thinking in explore mode
)
# Session management
self.current_session: Optional[ExplorationSession] = None
def start_exploration_session(self) -> bool:
"""Start a new exploration session."""
if not self.synthesizer.is_available():
print("❌ LLM service unavailable. Please check Ollama is running.")
return False
session_id = f"explore_{int(time.time())}"
self.current_session = ExplorationSession(
project_path=self.project_path,
conversation_history=[],
session_id=session_id,
started_at=time.time()
)
print("🧠 EXPLORATION MODE STARTED")
print("=" * 50)
print(f"Project: {self.project_path.name}")
print(f"Session: {session_id}")
print("\n🎯 This mode uses thinking and remembers context.")
print(" Perfect for debugging, learning, and deep exploration.")
print("\n💡 Tips:")
print(" • Ask follow-up questions - I'll remember our conversation")
print(" • Use 'why', 'how', 'explain' for detailed reasoning")
print(" • Type 'quit' or 'exit' to end session")
print("\n" + "=" * 50)
return True
def explore_question(self, question: str, context_limit: int = 10) -> Optional[str]:
"""Explore a question with full thinking and context."""
if not self.current_session:
return "❌ No exploration session active. Start one first."
# Search for relevant information
search_start = time.time()
results = self.searcher.search(
question,
limit=context_limit,
include_context=True,
semantic_weight=0.7,
bm25_weight=0.3
)
search_time = time.time() - search_start
# Build enhanced prompt with conversation context
synthesis_prompt = self._build_contextual_prompt(question, results)
# Get thinking-enabled analysis
synthesis_start = time.time()
synthesis = self._synthesize_with_context(synthesis_prompt, results)
synthesis_time = time.time() - synthesis_start
# Add to conversation history
self.current_session.add_exchange(question, results, synthesis)
# Format response with exploration context
response = self._format_exploration_response(
question, synthesis, len(results), search_time, synthesis_time
)
return response
def _build_contextual_prompt(self, question: str, results: List[Any]) -> str:
"""Build a prompt that includes conversation context."""
# Get recent conversation context (last 3 exchanges)
context_summary = ""
if self.current_session.conversation_history:
recent_exchanges = self.current_session.conversation_history[-3:]
context_parts = []
for i, exchange in enumerate(recent_exchanges, 1):
prev_q = exchange["question"]
prev_summary = exchange["response"]["summary"]
context_parts.append(f"Previous Q{i}: {prev_q}")
context_parts.append(f"Previous A{i}: {prev_summary}")
context_summary = "\n".join(context_parts)
# Build search results context
results_context = []
for i, result in enumerate(results[:8], 1):
file_path = result.file_path if hasattr(result, 'file_path') else 'unknown'
content = result.content if hasattr(result, 'content') else str(result)
score = result.score if hasattr(result, 'score') else 0.0
results_context.append(f"""
Result {i} (Score: {score:.3f}):
File: {file_path}
Content: {content[:800]}{'...' if len(content) > 800 else ''}
""")
results_text = "\n".join(results_context)
# Create comprehensive exploration prompt
prompt = f"""You are a senior software engineer helping explore and debug code. You have access to thinking mode and conversation context.
PROJECT: {self.project_path.name}
CONVERSATION CONTEXT:
{context_summary}
CURRENT QUESTION: "{question}"
SEARCH RESULTS:
{results_text}
Please provide a detailed analysis in JSON format. Think through the problem carefully and consider the conversation context:
{{
"summary": "2-3 sentences explaining what you found and how it relates to the question",
"key_points": [
"Important insight 1 (reference specific code/files)",
"Important insight 2 (explain relationships)",
"Important insight 3 (consider conversation context)"
],
"code_examples": [
"Relevant code snippet or pattern with explanation",
"Another important code example with context"
],
"suggested_actions": [
"Specific next step the developer should take",
"Follow-up investigation or debugging approach",
"Potential improvements or fixes"
],
"confidence": 0.85
}}
Focus on:
- Deep technical analysis with reasoning
- How this connects to previous questions in our conversation
- Practical debugging/learning insights
- Specific code references and explanations
- Clear next steps for the developer
Think carefully about the relationships between code components and how they answer the question in context."""
return prompt
def _synthesize_with_context(self, prompt: str, results: List[Any]) -> SynthesisResult:
"""Synthesize results with full context and thinking."""
try:
# Use thinking-enabled synthesis with lower temperature for exploration
response = self.synthesizer._call_ollama(prompt, temperature=0.2)
if not response:
return SynthesisResult(
summary="Analysis unavailable (LLM service error)",
key_points=[],
code_examples=[],
suggested_actions=["Check LLM service status"],
confidence=0.0
)
# Parse the structured response
try:
# Extract JSON from response
start_idx = response.find('{')
end_idx = response.rfind('}') + 1
if start_idx >= 0 and end_idx > start_idx:
json_str = response[start_idx:end_idx]
data = json.loads(json_str)
return SynthesisResult(
summary=data.get('summary', 'Analysis completed'),
key_points=data.get('key_points', []),
code_examples=data.get('code_examples', []),
suggested_actions=data.get('suggested_actions', []),
confidence=float(data.get('confidence', 0.7))
)
else:
# Fallback: use raw response as summary
return SynthesisResult(
summary=response[:400] + '...' if len(response) > 400 else response,
key_points=[],
code_examples=[],
suggested_actions=[],
confidence=0.5
)
except json.JSONDecodeError:
return SynthesisResult(
summary="Analysis completed but format parsing failed",
key_points=[],
code_examples=[],
suggested_actions=["Try rephrasing your question"],
confidence=0.3
)
except Exception as e:
logger.error(f"Context synthesis failed: {e}")
return SynthesisResult(
summary="Analysis failed due to service error",
key_points=[],
code_examples=[],
suggested_actions=["Check system status and try again"],
confidence=0.0
)
def _format_exploration_response(self, question: str, synthesis: SynthesisResult,
result_count: int, search_time: float, synthesis_time: float) -> str:
"""Format exploration response with context indicators."""
output = []
# Header with session context
session_duration = time.time() - self.current_session.started_at
exchange_count = len(self.current_session.conversation_history)
output.append(f"🧠 EXPLORATION ANALYSIS (Question #{exchange_count})")
output.append(f"Session: {session_duration/60:.1f}m | Results: {result_count} | "
f"Time: {search_time+synthesis_time:.1f}s")
output.append("=" * 60)
output.append("")
# Main analysis
output.append(f"📝 Analysis:")
output.append(f" {synthesis.summary}")
output.append("")
if synthesis.key_points:
output.append("🔍 Key Insights:")
for point in synthesis.key_points:
output.append(f"{point}")
output.append("")
if synthesis.code_examples:
output.append("💡 Code Examples:")
for example in synthesis.code_examples:
output.append(f" {example}")
output.append("")
if synthesis.suggested_actions:
output.append("🎯 Next Steps:")
for action in synthesis.suggested_actions:
output.append(f"{action}")
output.append("")
# Confidence and context indicator
confidence_emoji = "🟢" if synthesis.confidence > 0.7 else "🟡" if synthesis.confidence > 0.4 else "🔴"
context_indicator = f" | Context: {exchange_count-1} previous questions" if exchange_count > 1 else ""
output.append(f"{confidence_emoji} Confidence: {synthesis.confidence:.1%}{context_indicator}")
return "\n".join(output)
def get_session_summary(self) -> str:
"""Get a summary of the current exploration session."""
if not self.current_session:
return "No active exploration session."
duration = time.time() - self.current_session.started_at
exchange_count = len(self.current_session.conversation_history)
summary = [
f"🧠 EXPLORATION SESSION SUMMARY",
f"=" * 40,
f"Project: {self.project_path.name}",
f"Session ID: {self.current_session.session_id}",
f"Duration: {duration/60:.1f} minutes",
f"Questions explored: {exchange_count}",
f"",
]
if exchange_count > 0:
summary.append("📋 Topics explored:")
for i, exchange in enumerate(self.current_session.conversation_history, 1):
question = exchange["question"][:50] + "..." if len(exchange["question"]) > 50 else exchange["question"]
confidence = exchange["response"]["confidence"]
summary.append(f" {i}. {question} (confidence: {confidence:.1%})")
return "\n".join(summary)
def end_session(self) -> str:
"""End the current exploration session."""
if not self.current_session:
return "No active session to end."
summary = self.get_session_summary()
self.current_session = None
return summary + "\n\n✅ Exploration session ended."
# Quick test function
def test_explorer():
"""Test the code explorer."""
explorer = CodeExplorer(Path("."))
if not explorer.start_exploration_session():
print("❌ Could not start exploration session")
return
# Test question
response = explorer.explore_question("How does authentication work in this codebase?")
if response:
print(response)
print("\n" + explorer.end_session())
if __name__ == "__main__":
test_explorer()

View File

@ -27,10 +27,12 @@ class SynthesisResult:
class LLMSynthesizer: class LLMSynthesizer:
"""Synthesizes RAG search results using Ollama LLMs.""" """Synthesizes RAG search results using Ollama LLMs."""
def __init__(self, ollama_url: str = "http://localhost:11434", model: str = None): def __init__(self, ollama_url: str = "http://localhost:11434", model: str = None, enable_thinking: bool = True):
self.ollama_url = ollama_url.rstrip('/') self.ollama_url = ollama_url.rstrip('/')
self.available_models = self._get_available_models() self.available_models = []
self.model = model or self._select_best_model() self.model = model
self.enable_thinking = enable_thinking
self._initialized = False
def _get_available_models(self) -> List[str]: def _get_available_models(self) -> List[str]:
"""Get list of available Ollama models.""" """Get list of available Ollama models."""
@ -102,11 +104,31 @@ class LLMSynthesizer:
logger.warning(f"Using fallback model: {fallback}") logger.warning(f"Using fallback model: {fallback}")
return fallback return fallback
def _ensure_initialized(self):
"""Lazy initialization with LLM warmup."""
if self._initialized:
return
# Load available models
self.available_models = self._get_available_models()
if not self.model:
self.model = self._select_best_model()
# Warm up LLM with minimal request (ignores response)
if self.available_models:
try:
self._call_ollama("testing, just say 'hi'", temperature=0.1, disable_thinking=True)
except:
pass # Warmup failure is non-critical
self._initialized = True
def is_available(self) -> bool: def is_available(self) -> bool:
"""Check if Ollama is available and has models.""" """Check if Ollama is available and has models."""
self._ensure_initialized()
return len(self.available_models) > 0 return len(self.available_models) > 0
def _call_ollama(self, prompt: str, temperature: float = 0.3) -> Optional[str]: def _call_ollama(self, prompt: str, temperature: float = 0.3, disable_thinking: bool = False) -> Optional[str]:
"""Make a call to Ollama API.""" """Make a call to Ollama API."""
try: try:
# Use the best available model # Use the best available model
@ -119,9 +141,15 @@ class LLMSynthesizer:
logger.error("No Ollama models available") logger.error("No Ollama models available")
return None return None
# Handle thinking mode for Qwen3 models
final_prompt = prompt
if not self.enable_thinking or disable_thinking:
if not final_prompt.endswith(" <no_think>"):
final_prompt += " <no_think>"
payload = { payload = {
"model": model_to_use, "model": model_to_use,
"prompt": prompt, "prompt": final_prompt,
"stream": False, "stream": False,
"options": { "options": {
"temperature": temperature, "temperature": temperature,
@ -150,6 +178,7 @@ class LLMSynthesizer:
def synthesize_search_results(self, query: str, results: List[Any], project_path: Path) -> SynthesisResult: def synthesize_search_results(self, query: str, results: List[Any], project_path: Path) -> SynthesisResult:
"""Synthesize search results into a coherent summary.""" """Synthesize search results into a coherent summary."""
self._ensure_initialized()
if not self.is_available(): if not self.is_available():
return SynthesisResult( return SynthesisResult(
summary="LLM synthesis unavailable (Ollama not running or no models)", summary="LLM synthesis unavailable (Ollama not running or no models)",

View File

@ -47,15 +47,43 @@ class QueryExpander:
self.model = config.llm.expansion_model self.model = config.llm.expansion_model
self.max_terms = config.llm.max_expansion_terms self.max_terms = config.llm.max_expansion_terms
self.enabled = config.search.expand_queries self.enabled = config.search.expand_queries
self._initialized = False
# Cache for expanded queries to avoid repeated API calls # Cache for expanded queries to avoid repeated API calls
self._cache = {} self._cache = {}
def _ensure_initialized(self):
"""Lazy initialization with LLM warmup."""
if self._initialized:
return
# Warm up LLM if enabled and available
if self.enabled:
try:
model = self._select_expansion_model()
if model:
requests.post(
f"{self.ollama_url}/api/generate",
json={
"model": model,
"prompt": "testing, just say 'hi' <no_think>",
"stream": False,
"options": {"temperature": 0.1, "max_tokens": 5}
},
timeout=5
)
except:
pass # Warmup failure is non-critical
self._initialized = True
def expand_query(self, query: str) -> str: def expand_query(self, query: str) -> str:
"""Expand a search query with related terms.""" """Expand a search query with related terms."""
if not self.enabled or not query.strip(): if not self.enabled or not query.strip():
return query return query
self._ensure_initialized()
# Check cache first # Check cache first
if query in self._cache: if query in self._cache:
return self._cache[query] return self._cache[query]
@ -207,6 +235,7 @@ Expanded query:"""
if not self.enabled: if not self.enabled:
return False return False
self._ensure_initialized()
try: try:
response = requests.get(f"{self.ollama_url}/api/tags", timeout=5) response = requests.get(f"{self.ollama_url}/api/tags", timeout=5)
return response.status_code == 200 return response.status_code == 200

View File

@ -52,3 +52,4 @@ llm:
enable_synthesis: false # Enable synthesis by default enable_synthesis: false # Enable synthesis by default
synthesis_temperature: 0.3 # LLM temperature for analysis synthesis_temperature: 0.3 # LLM temperature for analysis
cpu_optimized: true # Prefer ultra-lightweight models for CPU-only systems cpu_optimized: true # Prefer ultra-lightweight models for CPU-only systems
enable_thinking: true # Enable thinking mode for Qwen3 models (production: true, testing: false)

View File

@ -19,6 +19,7 @@ from claude_rag.indexer import ProjectIndexer
from claude_rag.search import CodeSearcher from claude_rag.search import CodeSearcher
from claude_rag.ollama_embeddings import OllamaEmbedder from claude_rag.ollama_embeddings import OllamaEmbedder
from claude_rag.llm_synthesizer import LLMSynthesizer from claude_rag.llm_synthesizer import LLMSynthesizer
from claude_rag.explorer import CodeExplorer
# Configure logging for user-friendly output # Configure logging for user-friendly output
logging.basicConfig( logging.basicConfig(
@ -231,6 +232,77 @@ def status_check(project_path: Path):
print(f"❌ Status check failed: {e}") print(f"❌ Status check failed: {e}")
sys.exit(1) sys.exit(1)
def explore_interactive(project_path: Path):
"""Interactive exploration mode with thinking and context memory."""
try:
explorer = CodeExplorer(project_path)
if not explorer.start_exploration_session():
sys.exit(1)
print("\n🤔 Ask your first question about the codebase:")
while True:
try:
# Get user input
question = input("\n> ").strip()
# Handle exit commands
if question.lower() in ['quit', 'exit', 'q']:
print("\n" + explorer.end_session())
break
# Handle empty input
if not question:
print("Please enter a question or 'quit' to exit.")
continue
# Special commands
if question.lower() in ['help', 'h']:
print("""
🧠 EXPLORATION MODE HELP:
Ask any question about the codebase
I remember our conversation for follow-up questions
Use 'why', 'how', 'explain' for detailed reasoning
Type 'summary' to see session overview
Type 'quit' or 'exit' to end session
💡 Example questions:
"How does authentication work?"
"Why is this function slow?"
"Explain the database connection logic"
"What are the security concerns here?"
""")
continue
if question.lower() == 'summary':
print("\n" + explorer.get_session_summary())
continue
# Process the question
print("\n🔍 Analyzing...")
response = explorer.explore_question(question)
if response:
print(f"\n{response}")
else:
print("❌ Sorry, I couldn't process that question. Please try again.")
except KeyboardInterrupt:
print(f"\n\n{explorer.end_session()}")
break
except EOFError:
print(f"\n\n{explorer.end_session()}")
break
except Exception as e:
print(f"❌ Error processing question: {e}")
print("Please try again or type 'quit' to exit.")
except Exception as e:
print(f"❌ Failed to start exploration mode: {e}")
print("Make sure the project is indexed first: rag-mini index <project>")
sys.exit(1)
def main(): def main():
"""Main CLI interface.""" """Main CLI interface."""
parser = argparse.ArgumentParser( parser = argparse.ArgumentParser(
@ -241,11 +313,12 @@ Examples:
rag-mini index /path/to/project # Index a project rag-mini index /path/to/project # Index a project
rag-mini search /path/to/project "query" # Search indexed project rag-mini search /path/to/project "query" # Search indexed project
rag-mini search /path/to/project "query" -s # Search with LLM synthesis rag-mini search /path/to/project "query" -s # Search with LLM synthesis
rag-mini explore /path/to/project # Interactive exploration mode
rag-mini status /path/to/project # Show status rag-mini status /path/to/project # Show status
""" """
) )
parser.add_argument('command', choices=['index', 'search', 'status'], parser.add_argument('command', choices=['index', 'search', 'explore', 'status'],
help='Command to execute') help='Command to execute')
parser.add_argument('project_path', type=Path, parser.add_argument('project_path', type=Path,
help='Path to project directory (REQUIRED)') help='Path to project directory (REQUIRED)')
@ -283,6 +356,8 @@ Examples:
print("❌ Search query required") print("❌ Search query required")
sys.exit(1) sys.exit(1)
search_project(args.project_path, args.query, args.limit, args.synthesize) search_project(args.project_path, args.query, args.limit, args.synthesize)
elif args.command == 'explore':
explore_interactive(args.project_path)
elif args.command == 'status': elif args.command == 'status':
status_check(args.project_path) status_check(args.project_path)