Major code quality improvements and structural organization
- Applied Black formatter and isort across entire codebase for professional consistency - Moved implementation scripts (rag-mini.py, rag-tui.py) to bin/ directory for cleaner root - Updated shell scripts to reference new bin/ locations maintaining user compatibility - Added comprehensive linting configuration (.flake8, pyproject.toml) with dedicated .venv-linting - Removed development artifacts (commit_message.txt, GET_STARTED.md duplicate) from root - Consolidated documentation and fixed script references across all guides - Relocated test_fixes.py to proper tests/ directory - Enhanced project structure following Python packaging standards All user commands work identically while improving code organization and beginner accessibility.
This commit is contained in:
parent
df4ca2f221
commit
930f53a0fb
19
.flake8
Normal file
19
.flake8
Normal file
@ -0,0 +1,19 @@
|
||||
[flake8]
|
||||
# Professional Python code style - balances quality with readability
|
||||
max-line-length = 95
|
||||
extend-ignore = E203,W503,W605
|
||||
exclude =
|
||||
.venv,
|
||||
.venv-linting,
|
||||
__pycache__,
|
||||
*.egg-info,
|
||||
.git,
|
||||
build,
|
||||
dist,
|
||||
.mini-rag
|
||||
|
||||
# Per-file ignores for practical development
|
||||
per-file-ignores =
|
||||
tests/*.py:F401,F841
|
||||
examples/*.py:F401,F841
|
||||
fix_*.py:F401,F841,E501
|
||||
@ -1 +1 @@
|
||||
how to run tests
|
||||
test
|
||||
247
.venv-linting/bin/Activate.ps1
Normal file
247
.venv-linting/bin/Activate.ps1
Normal file
@ -0,0 +1,247 @@
|
||||
<#
|
||||
.Synopsis
|
||||
Activate a Python virtual environment for the current PowerShell session.
|
||||
|
||||
.Description
|
||||
Pushes the python executable for a virtual environment to the front of the
|
||||
$Env:PATH environment variable and sets the prompt to signify that you are
|
||||
in a Python virtual environment. Makes use of the command line switches as
|
||||
well as the `pyvenv.cfg` file values present in the virtual environment.
|
||||
|
||||
.Parameter VenvDir
|
||||
Path to the directory that contains the virtual environment to activate. The
|
||||
default value for this is the parent of the directory that the Activate.ps1
|
||||
script is located within.
|
||||
|
||||
.Parameter Prompt
|
||||
The prompt prefix to display when this virtual environment is activated. By
|
||||
default, this prompt is the name of the virtual environment folder (VenvDir)
|
||||
surrounded by parentheses and followed by a single space (ie. '(.venv) ').
|
||||
|
||||
.Example
|
||||
Activate.ps1
|
||||
Activates the Python virtual environment that contains the Activate.ps1 script.
|
||||
|
||||
.Example
|
||||
Activate.ps1 -Verbose
|
||||
Activates the Python virtual environment that contains the Activate.ps1 script,
|
||||
and shows extra information about the activation as it executes.
|
||||
|
||||
.Example
|
||||
Activate.ps1 -VenvDir C:\Users\MyUser\Common\.venv
|
||||
Activates the Python virtual environment located in the specified location.
|
||||
|
||||
.Example
|
||||
Activate.ps1 -Prompt "MyPython"
|
||||
Activates the Python virtual environment that contains the Activate.ps1 script,
|
||||
and prefixes the current prompt with the specified string (surrounded in
|
||||
parentheses) while the virtual environment is active.
|
||||
|
||||
.Notes
|
||||
On Windows, it may be required to enable this Activate.ps1 script by setting the
|
||||
execution policy for the user. You can do this by issuing the following PowerShell
|
||||
command:
|
||||
|
||||
PS C:\> Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser
|
||||
|
||||
For more information on Execution Policies:
|
||||
https://go.microsoft.com/fwlink/?LinkID=135170
|
||||
|
||||
#>
|
||||
Param(
|
||||
[Parameter(Mandatory = $false)]
|
||||
[String]
|
||||
$VenvDir,
|
||||
[Parameter(Mandatory = $false)]
|
||||
[String]
|
||||
$Prompt
|
||||
)
|
||||
|
||||
<# Function declarations --------------------------------------------------- #>
|
||||
|
||||
<#
|
||||
.Synopsis
|
||||
Remove all shell session elements added by the Activate script, including the
|
||||
addition of the virtual environment's Python executable from the beginning of
|
||||
the PATH variable.
|
||||
|
||||
.Parameter NonDestructive
|
||||
If present, do not remove this function from the global namespace for the
|
||||
session.
|
||||
|
||||
#>
|
||||
function global:deactivate ([switch]$NonDestructive) {
|
||||
# Revert to original values
|
||||
|
||||
# The prior prompt:
|
||||
if (Test-Path -Path Function:_OLD_VIRTUAL_PROMPT) {
|
||||
Copy-Item -Path Function:_OLD_VIRTUAL_PROMPT -Destination Function:prompt
|
||||
Remove-Item -Path Function:_OLD_VIRTUAL_PROMPT
|
||||
}
|
||||
|
||||
# The prior PYTHONHOME:
|
||||
if (Test-Path -Path Env:_OLD_VIRTUAL_PYTHONHOME) {
|
||||
Copy-Item -Path Env:_OLD_VIRTUAL_PYTHONHOME -Destination Env:PYTHONHOME
|
||||
Remove-Item -Path Env:_OLD_VIRTUAL_PYTHONHOME
|
||||
}
|
||||
|
||||
# The prior PATH:
|
||||
if (Test-Path -Path Env:_OLD_VIRTUAL_PATH) {
|
||||
Copy-Item -Path Env:_OLD_VIRTUAL_PATH -Destination Env:PATH
|
||||
Remove-Item -Path Env:_OLD_VIRTUAL_PATH
|
||||
}
|
||||
|
||||
# Just remove the VIRTUAL_ENV altogether:
|
||||
if (Test-Path -Path Env:VIRTUAL_ENV) {
|
||||
Remove-Item -Path env:VIRTUAL_ENV
|
||||
}
|
||||
|
||||
# Just remove VIRTUAL_ENV_PROMPT altogether.
|
||||
if (Test-Path -Path Env:VIRTUAL_ENV_PROMPT) {
|
||||
Remove-Item -Path env:VIRTUAL_ENV_PROMPT
|
||||
}
|
||||
|
||||
# Just remove the _PYTHON_VENV_PROMPT_PREFIX altogether:
|
||||
if (Get-Variable -Name "_PYTHON_VENV_PROMPT_PREFIX" -ErrorAction SilentlyContinue) {
|
||||
Remove-Variable -Name _PYTHON_VENV_PROMPT_PREFIX -Scope Global -Force
|
||||
}
|
||||
|
||||
# Leave deactivate function in the global namespace if requested:
|
||||
if (-not $NonDestructive) {
|
||||
Remove-Item -Path function:deactivate
|
||||
}
|
||||
}
|
||||
|
||||
<#
|
||||
.Description
|
||||
Get-PyVenvConfig parses the values from the pyvenv.cfg file located in the
|
||||
given folder, and returns them in a map.
|
||||
|
||||
For each line in the pyvenv.cfg file, if that line can be parsed into exactly
|
||||
two strings separated by `=` (with any amount of whitespace surrounding the =)
|
||||
then it is considered a `key = value` line. The left hand string is the key,
|
||||
the right hand is the value.
|
||||
|
||||
If the value starts with a `'` or a `"` then the first and last character is
|
||||
stripped from the value before being captured.
|
||||
|
||||
.Parameter ConfigDir
|
||||
Path to the directory that contains the `pyvenv.cfg` file.
|
||||
#>
|
||||
function Get-PyVenvConfig(
|
||||
[String]
|
||||
$ConfigDir
|
||||
) {
|
||||
Write-Verbose "Given ConfigDir=$ConfigDir, obtain values in pyvenv.cfg"
|
||||
|
||||
# Ensure the file exists, and issue a warning if it doesn't (but still allow the function to continue).
|
||||
$pyvenvConfigPath = Join-Path -Resolve -Path $ConfigDir -ChildPath 'pyvenv.cfg' -ErrorAction Continue
|
||||
|
||||
# An empty map will be returned if no config file is found.
|
||||
$pyvenvConfig = @{ }
|
||||
|
||||
if ($pyvenvConfigPath) {
|
||||
|
||||
Write-Verbose "File exists, parse `key = value` lines"
|
||||
$pyvenvConfigContent = Get-Content -Path $pyvenvConfigPath
|
||||
|
||||
$pyvenvConfigContent | ForEach-Object {
|
||||
$keyval = $PSItem -split "\s*=\s*", 2
|
||||
if ($keyval[0] -and $keyval[1]) {
|
||||
$val = $keyval[1]
|
||||
|
||||
# Remove extraneous quotations around a string value.
|
||||
if ("'""".Contains($val.Substring(0, 1))) {
|
||||
$val = $val.Substring(1, $val.Length - 2)
|
||||
}
|
||||
|
||||
$pyvenvConfig[$keyval[0]] = $val
|
||||
Write-Verbose "Adding Key: '$($keyval[0])'='$val'"
|
||||
}
|
||||
}
|
||||
}
|
||||
return $pyvenvConfig
|
||||
}
|
||||
|
||||
|
||||
<# Begin Activate script --------------------------------------------------- #>
|
||||
|
||||
# Determine the containing directory of this script
|
||||
$VenvExecPath = Split-Path -Parent $MyInvocation.MyCommand.Definition
|
||||
$VenvExecDir = Get-Item -Path $VenvExecPath
|
||||
|
||||
Write-Verbose "Activation script is located in path: '$VenvExecPath'"
|
||||
Write-Verbose "VenvExecDir Fullname: '$($VenvExecDir.FullName)"
|
||||
Write-Verbose "VenvExecDir Name: '$($VenvExecDir.Name)"
|
||||
|
||||
# Set values required in priority: CmdLine, ConfigFile, Default
|
||||
# First, get the location of the virtual environment, it might not be
|
||||
# VenvExecDir if specified on the command line.
|
||||
if ($VenvDir) {
|
||||
Write-Verbose "VenvDir given as parameter, using '$VenvDir' to determine values"
|
||||
}
|
||||
else {
|
||||
Write-Verbose "VenvDir not given as a parameter, using parent directory name as VenvDir."
|
||||
$VenvDir = $VenvExecDir.Parent.FullName.TrimEnd("\\/")
|
||||
Write-Verbose "VenvDir=$VenvDir"
|
||||
}
|
||||
|
||||
# Next, read the `pyvenv.cfg` file to determine any required value such
|
||||
# as `prompt`.
|
||||
$pyvenvCfg = Get-PyVenvConfig -ConfigDir $VenvDir
|
||||
|
||||
# Next, set the prompt from the command line, or the config file, or
|
||||
# just use the name of the virtual environment folder.
|
||||
if ($Prompt) {
|
||||
Write-Verbose "Prompt specified as argument, using '$Prompt'"
|
||||
}
|
||||
else {
|
||||
Write-Verbose "Prompt not specified as argument to script, checking pyvenv.cfg value"
|
||||
if ($pyvenvCfg -and $pyvenvCfg['prompt']) {
|
||||
Write-Verbose " Setting based on value in pyvenv.cfg='$($pyvenvCfg['prompt'])'"
|
||||
$Prompt = $pyvenvCfg['prompt'];
|
||||
}
|
||||
else {
|
||||
Write-Verbose " Setting prompt based on parent's directory's name. (Is the directory name passed to venv module when creating the virtual environment)"
|
||||
Write-Verbose " Got leaf-name of $VenvDir='$(Split-Path -Path $venvDir -Leaf)'"
|
||||
$Prompt = Split-Path -Path $venvDir -Leaf
|
||||
}
|
||||
}
|
||||
|
||||
Write-Verbose "Prompt = '$Prompt'"
|
||||
Write-Verbose "VenvDir='$VenvDir'"
|
||||
|
||||
# Deactivate any currently active virtual environment, but leave the
|
||||
# deactivate function in place.
|
||||
deactivate -nondestructive
|
||||
|
||||
# Now set the environment variable VIRTUAL_ENV, used by many tools to determine
|
||||
# that there is an activated venv.
|
||||
$env:VIRTUAL_ENV = $VenvDir
|
||||
|
||||
if (-not $Env:VIRTUAL_ENV_DISABLE_PROMPT) {
|
||||
|
||||
Write-Verbose "Setting prompt to '$Prompt'"
|
||||
|
||||
# Set the prompt to include the env name
|
||||
# Make sure _OLD_VIRTUAL_PROMPT is global
|
||||
function global:_OLD_VIRTUAL_PROMPT { "" }
|
||||
Copy-Item -Path function:prompt -Destination function:_OLD_VIRTUAL_PROMPT
|
||||
New-Variable -Name _PYTHON_VENV_PROMPT_PREFIX -Description "Python virtual environment prompt prefix" -Scope Global -Option ReadOnly -Visibility Public -Value $Prompt
|
||||
|
||||
function global:prompt {
|
||||
Write-Host -NoNewline -ForegroundColor Green "($_PYTHON_VENV_PROMPT_PREFIX) "
|
||||
_OLD_VIRTUAL_PROMPT
|
||||
}
|
||||
$env:VIRTUAL_ENV_PROMPT = $Prompt
|
||||
}
|
||||
|
||||
# Clear PYTHONHOME
|
||||
if (Test-Path -Path Env:PYTHONHOME) {
|
||||
Copy-Item -Path Env:PYTHONHOME -Destination Env:_OLD_VIRTUAL_PYTHONHOME
|
||||
Remove-Item -Path Env:PYTHONHOME
|
||||
}
|
||||
|
||||
# Add the venv to the PATH
|
||||
Copy-Item -Path Env:PATH -Destination Env:_OLD_VIRTUAL_PATH
|
||||
$Env:PATH = "$VenvExecDir$([System.IO.Path]::PathSeparator)$Env:PATH"
|
||||
70
.venv-linting/bin/activate
Normal file
70
.venv-linting/bin/activate
Normal file
@ -0,0 +1,70 @@
|
||||
# This file must be used with "source bin/activate" *from bash*
|
||||
# You cannot run it directly
|
||||
|
||||
deactivate () {
|
||||
# reset old environment variables
|
||||
if [ -n "${_OLD_VIRTUAL_PATH:-}" ] ; then
|
||||
PATH="${_OLD_VIRTUAL_PATH:-}"
|
||||
export PATH
|
||||
unset _OLD_VIRTUAL_PATH
|
||||
fi
|
||||
if [ -n "${_OLD_VIRTUAL_PYTHONHOME:-}" ] ; then
|
||||
PYTHONHOME="${_OLD_VIRTUAL_PYTHONHOME:-}"
|
||||
export PYTHONHOME
|
||||
unset _OLD_VIRTUAL_PYTHONHOME
|
||||
fi
|
||||
|
||||
# Call hash to forget past commands. Without forgetting
|
||||
# past commands the $PATH changes we made may not be respected
|
||||
hash -r 2> /dev/null
|
||||
|
||||
if [ -n "${_OLD_VIRTUAL_PS1:-}" ] ; then
|
||||
PS1="${_OLD_VIRTUAL_PS1:-}"
|
||||
export PS1
|
||||
unset _OLD_VIRTUAL_PS1
|
||||
fi
|
||||
|
||||
unset VIRTUAL_ENV
|
||||
unset VIRTUAL_ENV_PROMPT
|
||||
if [ ! "${1:-}" = "nondestructive" ] ; then
|
||||
# Self destruct!
|
||||
unset -f deactivate
|
||||
fi
|
||||
}
|
||||
|
||||
# unset irrelevant variables
|
||||
deactivate nondestructive
|
||||
|
||||
# on Windows, a path can contain colons and backslashes and has to be converted:
|
||||
if [ "${OSTYPE:-}" = "cygwin" ] || [ "${OSTYPE:-}" = "msys" ] ; then
|
||||
# transform D:\path\to\venv to /d/path/to/venv on MSYS
|
||||
# and to /cygdrive/d/path/to/venv on Cygwin
|
||||
export VIRTUAL_ENV=$(cygpath /MASTERFOLDER/Coding/Fss-Mini-Rag/.venv-linting)
|
||||
else
|
||||
# use the path as-is
|
||||
export VIRTUAL_ENV=/MASTERFOLDER/Coding/Fss-Mini-Rag/.venv-linting
|
||||
fi
|
||||
|
||||
_OLD_VIRTUAL_PATH="$PATH"
|
||||
PATH="$VIRTUAL_ENV/"bin":$PATH"
|
||||
export PATH
|
||||
|
||||
# unset PYTHONHOME if set
|
||||
# this will fail if PYTHONHOME is set to the empty string (which is bad anyway)
|
||||
# could use `if (set -u; : $PYTHONHOME) ;` in bash
|
||||
if [ -n "${PYTHONHOME:-}" ] ; then
|
||||
_OLD_VIRTUAL_PYTHONHOME="${PYTHONHOME:-}"
|
||||
unset PYTHONHOME
|
||||
fi
|
||||
|
||||
if [ -z "${VIRTUAL_ENV_DISABLE_PROMPT:-}" ] ; then
|
||||
_OLD_VIRTUAL_PS1="${PS1:-}"
|
||||
PS1='(.venv-linting) '"${PS1:-}"
|
||||
export PS1
|
||||
VIRTUAL_ENV_PROMPT='(.venv-linting) '
|
||||
export VIRTUAL_ENV_PROMPT
|
||||
fi
|
||||
|
||||
# Call hash to forget past commands. Without forgetting
|
||||
# past commands the $PATH changes we made may not be respected
|
||||
hash -r 2> /dev/null
|
||||
27
.venv-linting/bin/activate.csh
Normal file
27
.venv-linting/bin/activate.csh
Normal file
@ -0,0 +1,27 @@
|
||||
# This file must be used with "source bin/activate.csh" *from csh*.
|
||||
# You cannot run it directly.
|
||||
|
||||
# Created by Davide Di Blasi <davidedb@gmail.com>.
|
||||
# Ported to Python 3.3 venv by Andrew Svetlov <andrew.svetlov@gmail.com>
|
||||
|
||||
alias deactivate 'test $?_OLD_VIRTUAL_PATH != 0 && setenv PATH "$_OLD_VIRTUAL_PATH" && unset _OLD_VIRTUAL_PATH; rehash; test $?_OLD_VIRTUAL_PROMPT != 0 && set prompt="$_OLD_VIRTUAL_PROMPT" && unset _OLD_VIRTUAL_PROMPT; unsetenv VIRTUAL_ENV; unsetenv VIRTUAL_ENV_PROMPT; test "\!:*" != "nondestructive" && unalias deactivate'
|
||||
|
||||
# Unset irrelevant variables.
|
||||
deactivate nondestructive
|
||||
|
||||
setenv VIRTUAL_ENV /MASTERFOLDER/Coding/Fss-Mini-Rag/.venv-linting
|
||||
|
||||
set _OLD_VIRTUAL_PATH="$PATH"
|
||||
setenv PATH "$VIRTUAL_ENV/"bin":$PATH"
|
||||
|
||||
|
||||
set _OLD_VIRTUAL_PROMPT="$prompt"
|
||||
|
||||
if (! "$?VIRTUAL_ENV_DISABLE_PROMPT") then
|
||||
set prompt = '(.venv-linting) '"$prompt"
|
||||
setenv VIRTUAL_ENV_PROMPT '(.venv-linting) '
|
||||
endif
|
||||
|
||||
alias pydoc python -m pydoc
|
||||
|
||||
rehash
|
||||
69
.venv-linting/bin/activate.fish
Normal file
69
.venv-linting/bin/activate.fish
Normal file
@ -0,0 +1,69 @@
|
||||
# This file must be used with "source <venv>/bin/activate.fish" *from fish*
|
||||
# (https://fishshell.com/). You cannot run it directly.
|
||||
|
||||
function deactivate -d "Exit virtual environment and return to normal shell environment"
|
||||
# reset old environment variables
|
||||
if test -n "$_OLD_VIRTUAL_PATH"
|
||||
set -gx PATH $_OLD_VIRTUAL_PATH
|
||||
set -e _OLD_VIRTUAL_PATH
|
||||
end
|
||||
if test -n "$_OLD_VIRTUAL_PYTHONHOME"
|
||||
set -gx PYTHONHOME $_OLD_VIRTUAL_PYTHONHOME
|
||||
set -e _OLD_VIRTUAL_PYTHONHOME
|
||||
end
|
||||
|
||||
if test -n "$_OLD_FISH_PROMPT_OVERRIDE"
|
||||
set -e _OLD_FISH_PROMPT_OVERRIDE
|
||||
# prevents error when using nested fish instances (Issue #93858)
|
||||
if functions -q _old_fish_prompt
|
||||
functions -e fish_prompt
|
||||
functions -c _old_fish_prompt fish_prompt
|
||||
functions -e _old_fish_prompt
|
||||
end
|
||||
end
|
||||
|
||||
set -e VIRTUAL_ENV
|
||||
set -e VIRTUAL_ENV_PROMPT
|
||||
if test "$argv[1]" != "nondestructive"
|
||||
# Self-destruct!
|
||||
functions -e deactivate
|
||||
end
|
||||
end
|
||||
|
||||
# Unset irrelevant variables.
|
||||
deactivate nondestructive
|
||||
|
||||
set -gx VIRTUAL_ENV /MASTERFOLDER/Coding/Fss-Mini-Rag/.venv-linting
|
||||
|
||||
set -gx _OLD_VIRTUAL_PATH $PATH
|
||||
set -gx PATH "$VIRTUAL_ENV/"bin $PATH
|
||||
|
||||
# Unset PYTHONHOME if set.
|
||||
if set -q PYTHONHOME
|
||||
set -gx _OLD_VIRTUAL_PYTHONHOME $PYTHONHOME
|
||||
set -e PYTHONHOME
|
||||
end
|
||||
|
||||
if test -z "$VIRTUAL_ENV_DISABLE_PROMPT"
|
||||
# fish uses a function instead of an env var to generate the prompt.
|
||||
|
||||
# Save the current fish_prompt function as the function _old_fish_prompt.
|
||||
functions -c fish_prompt _old_fish_prompt
|
||||
|
||||
# With the original prompt function renamed, we can override with our own.
|
||||
function fish_prompt
|
||||
# Save the return status of the last command.
|
||||
set -l old_status $status
|
||||
|
||||
# Output the venv prompt; color taken from the blue of the Python logo.
|
||||
printf "%s%s%s" (set_color 4B8BBE) '(.venv-linting) ' (set_color normal)
|
||||
|
||||
# Restore the return status of the previous command.
|
||||
echo "exit $old_status" | .
|
||||
# Output the original/"old" prompt.
|
||||
_old_fish_prompt
|
||||
end
|
||||
|
||||
set -gx _OLD_FISH_PROMPT_OVERRIDE "$VIRTUAL_ENV"
|
||||
set -gx VIRTUAL_ENV_PROMPT '(.venv-linting) '
|
||||
end
|
||||
8
.venv-linting/bin/black
Executable file
8
.venv-linting/bin/black
Executable file
@ -0,0 +1,8 @@
|
||||
#!/MASTERFOLDER/Coding/Fss-Mini-Rag/.venv-linting/bin/python3
|
||||
# -*- coding: utf-8 -*-
|
||||
import re
|
||||
import sys
|
||||
from black import patched_main
|
||||
if __name__ == '__main__':
|
||||
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
||||
sys.exit(patched_main())
|
||||
8
.venv-linting/bin/blackd
Executable file
8
.venv-linting/bin/blackd
Executable file
@ -0,0 +1,8 @@
|
||||
#!/MASTERFOLDER/Coding/Fss-Mini-Rag/.venv-linting/bin/python3
|
||||
# -*- coding: utf-8 -*-
|
||||
import re
|
||||
import sys
|
||||
from blackd import patched_main
|
||||
if __name__ == '__main__':
|
||||
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
||||
sys.exit(patched_main())
|
||||
8
.venv-linting/bin/isort
Executable file
8
.venv-linting/bin/isort
Executable file
@ -0,0 +1,8 @@
|
||||
#!/MASTERFOLDER/Coding/Fss-Mini-Rag/.venv-linting/bin/python3
|
||||
# -*- coding: utf-8 -*-
|
||||
import re
|
||||
import sys
|
||||
from isort.main import main
|
||||
if __name__ == '__main__':
|
||||
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
||||
sys.exit(main())
|
||||
8
.venv-linting/bin/isort-identify-imports
Executable file
8
.venv-linting/bin/isort-identify-imports
Executable file
@ -0,0 +1,8 @@
|
||||
#!/MASTERFOLDER/Coding/Fss-Mini-Rag/.venv-linting/bin/python3
|
||||
# -*- coding: utf-8 -*-
|
||||
import re
|
||||
import sys
|
||||
from isort.main import identify_imports_main
|
||||
if __name__ == '__main__':
|
||||
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
||||
sys.exit(identify_imports_main())
|
||||
8
.venv-linting/bin/pip
Executable file
8
.venv-linting/bin/pip
Executable file
@ -0,0 +1,8 @@
|
||||
#!/MASTERFOLDER/Coding/Fss-Mini-Rag/.venv-linting/bin/python3
|
||||
# -*- coding: utf-8 -*-
|
||||
import re
|
||||
import sys
|
||||
from pip._internal.cli.main import main
|
||||
if __name__ == '__main__':
|
||||
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
||||
sys.exit(main())
|
||||
8
.venv-linting/bin/pip3
Executable file
8
.venv-linting/bin/pip3
Executable file
@ -0,0 +1,8 @@
|
||||
#!/MASTERFOLDER/Coding/Fss-Mini-Rag/.venv-linting/bin/python3
|
||||
# -*- coding: utf-8 -*-
|
||||
import re
|
||||
import sys
|
||||
from pip._internal.cli.main import main
|
||||
if __name__ == '__main__':
|
||||
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
||||
sys.exit(main())
|
||||
8
.venv-linting/bin/pip3.12
Executable file
8
.venv-linting/bin/pip3.12
Executable file
@ -0,0 +1,8 @@
|
||||
#!/MASTERFOLDER/Coding/Fss-Mini-Rag/.venv-linting/bin/python3
|
||||
# -*- coding: utf-8 -*-
|
||||
import re
|
||||
import sys
|
||||
from pip._internal.cli.main import main
|
||||
if __name__ == '__main__':
|
||||
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
|
||||
sys.exit(main())
|
||||
1
.venv-linting/bin/python
Symbolic link
1
.venv-linting/bin/python
Symbolic link
@ -0,0 +1 @@
|
||||
python3
|
||||
1
.venv-linting/bin/python3
Symbolic link
1
.venv-linting/bin/python3
Symbolic link
@ -0,0 +1 @@
|
||||
/usr/bin/python3
|
||||
1
.venv-linting/bin/python3.12
Symbolic link
1
.venv-linting/bin/python3.12
Symbolic link
@ -0,0 +1 @@
|
||||
python3
|
||||
1
.venv-linting/lib64
Symbolic link
1
.venv-linting/lib64
Symbolic link
@ -0,0 +1 @@
|
||||
lib
|
||||
5
.venv-linting/pyvenv.cfg
Normal file
5
.venv-linting/pyvenv.cfg
Normal file
@ -0,0 +1,5 @@
|
||||
home = /usr/bin
|
||||
include-system-site-packages = false
|
||||
version = 3.12.3
|
||||
executable = /usr/bin/python3.12
|
||||
command = /usr/bin/python3 -m venv /MASTERFOLDER/Coding/Fss-Mini-Rag/.venv-linting
|
||||
@ -1,83 +0,0 @@
|
||||
# 🚀 FSS-Mini-RAG: Get Started in 2 Minutes
|
||||
|
||||
## Step 1: Install Everything
|
||||
```bash
|
||||
./install_mini_rag.sh
|
||||
```
|
||||
**That's it!** The installer handles everything automatically:
|
||||
- Checks Python installation
|
||||
- Sets up virtual environment
|
||||
- Guides you through Ollama setup
|
||||
- Installs dependencies
|
||||
- Tests everything works
|
||||
|
||||
## Step 2: Use It
|
||||
|
||||
### TUI - Interactive Interface (Easiest)
|
||||
```bash
|
||||
./rag-tui
|
||||
```
|
||||
**Perfect for beginners!** Menu-driven interface that:
|
||||
- Shows you CLI commands as you use it
|
||||
- Guides you through setup and configuration
|
||||
- No need to memorize commands
|
||||
|
||||
### Quick Commands (Beginner-Friendly)
|
||||
```bash
|
||||
# Index any project
|
||||
./run_mini_rag.sh index ~/my-project
|
||||
|
||||
# Search your code
|
||||
./run_mini_rag.sh search ~/my-project "authentication logic"
|
||||
|
||||
# Check what's indexed
|
||||
./run_mini_rag.sh status ~/my-project
|
||||
```
|
||||
|
||||
### Full Commands (More Options)
|
||||
```bash
|
||||
# Basic indexing and search
|
||||
./rag-mini index /path/to/project
|
||||
./rag-mini search /path/to/project "database connection"
|
||||
|
||||
# Enhanced search with smart features
|
||||
./rag-mini-enhanced search /path/to/project "UserManager"
|
||||
./rag-mini-enhanced similar /path/to/project "def validate_input"
|
||||
```
|
||||
|
||||
## What You Get
|
||||
|
||||
**Semantic Search**: Instead of exact text matching, finds code by meaning:
|
||||
- Search "user login" → finds authentication functions, session management, password validation
|
||||
- Search "database queries" → finds SQL, ORM code, connection handling
|
||||
- Search "error handling" → finds try/catch blocks, error classes, logging
|
||||
|
||||
## Installation Options
|
||||
|
||||
The installer offers two choices:
|
||||
|
||||
**Light Installation (Recommended)**:
|
||||
- Uses Ollama for high-quality embeddings
|
||||
- Requires Ollama installed (installer guides you)
|
||||
- Small download (~50MB)
|
||||
|
||||
**Full Installation**:
|
||||
- Includes ML fallback models
|
||||
- Works without Ollama
|
||||
- Large download (~2-3GB)
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
**"Python not found"**: Install Python 3.8+ from python.org
|
||||
**"Ollama not found"**: Visit https://ollama.ai/download
|
||||
**"Import errors"**: Re-run `./install_mini_rag.sh`
|
||||
|
||||
## Next Steps
|
||||
|
||||
- **Technical Details**: Read `README.md`
|
||||
- **Step-by-Step Guide**: Read `docs/GETTING_STARTED.md`
|
||||
- **Examples**: Check `examples/` directory
|
||||
- **Test It**: Run on this project: `./run_mini_rag.sh index .`
|
||||
|
||||
---
|
||||
**Questions?** Everything is documented in the README.md file.
|
||||
36
README.md
36
README.md
@ -79,34 +79,24 @@ FSS-Mini-RAG offers **two distinct experiences** optimized for different use cas
|
||||
|
||||
## Quick Start (2 Minutes)
|
||||
|
||||
**Linux/macOS:**
|
||||
**Step 1: Install**
|
||||
```bash
|
||||
# 1. Install everything
|
||||
# Linux/macOS
|
||||
./install_mini_rag.sh
|
||||
|
||||
# 2. Choose your interface
|
||||
./rag-tui # Friendly interface for beginners
|
||||
# OR choose your mode:
|
||||
./rag-mini index ~/my-project # Index your project first
|
||||
./rag-mini search ~/my-project "query" --synthesize # Fast synthesis
|
||||
./rag-mini explore ~/my-project # Interactive exploration
|
||||
# Windows
|
||||
install_windows.bat
|
||||
```
|
||||
|
||||
**Windows:**
|
||||
```cmd
|
||||
# 1. Install everything
|
||||
install_windows.bat
|
||||
**Step 2: Start Using**
|
||||
```bash
|
||||
# Beginners: Interactive interface
|
||||
./rag-tui # Linux/macOS
|
||||
rag.bat # Windows
|
||||
|
||||
# 2. Choose your interface
|
||||
rag.bat # Interactive interface
|
||||
# OR choose your mode:
|
||||
rag.bat index C:\my-project # Index your project first
|
||||
rag.bat search C:\my-project "query" # Fast search
|
||||
rag.bat explore C:\my-project # Interactive exploration
|
||||
|
||||
# Direct Python entrypoint (after install):
|
||||
rag-mini index C:\my-project
|
||||
rag-mini search C:\my-project "query"
|
||||
# Experienced users: Direct commands
|
||||
./rag-mini index ~/project # Index your project
|
||||
./rag-mini search ~/project "your query"
|
||||
```
|
||||
|
||||
That's it. No external dependencies, no configuration required, no PhD in computer science needed.
|
||||
@ -232,7 +222,7 @@ This implementation prioritizes:
|
||||
|
||||
## Next Steps
|
||||
|
||||
- **New users**: Run `./rag-mini` (Linux/macOS) or `rag.bat` (Windows) for guided experience
|
||||
- **New users**: Run `./rag-tui` (Linux/macOS) or `rag.bat` (Windows) for guided experience
|
||||
- **Developers**: Read [`TECHNICAL_GUIDE.md`](docs/TECHNICAL_GUIDE.md) for implementation details
|
||||
- **Contributors**: See [`CONTRIBUTING.md`](CONTRIBUTING.md) for development setup
|
||||
|
||||
|
||||
@ -6,24 +6,32 @@ A lightweight, portable RAG system for semantic code search.
|
||||
Usage: rag-mini <command> <project_path> [options]
|
||||
"""
|
||||
|
||||
import sys
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
import json
|
||||
import logging
|
||||
import socket
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Add parent directory to path so we can import mini_rag
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||
|
||||
import requests
|
||||
|
||||
# Add the RAG system to the path
|
||||
sys.path.insert(0, str(Path(__file__).parent))
|
||||
|
||||
try:
|
||||
from mini_rag.indexer import ProjectIndexer
|
||||
from mini_rag.search import CodeSearcher
|
||||
from mini_rag.ollama_embeddings import OllamaEmbedder
|
||||
from mini_rag.llm_synthesizer import LLMSynthesizer
|
||||
from mini_rag.explorer import CodeExplorer
|
||||
from mini_rag.indexer import ProjectIndexer
|
||||
from mini_rag.llm_synthesizer import LLMSynthesizer
|
||||
from mini_rag.ollama_embeddings import OllamaEmbedder
|
||||
from mini_rag.search import CodeSearcher
|
||||
|
||||
# Update system (graceful import)
|
||||
try:
|
||||
from mini_rag.updater import check_for_updates, get_updater
|
||||
|
||||
UPDATER_AVAILABLE = True
|
||||
except ImportError:
|
||||
UPDATER_AVAILABLE = False
|
||||
@ -48,50 +56,51 @@ except ImportError as e:
|
||||
# Configure logging for user-friendly output
|
||||
logging.basicConfig(
|
||||
level=logging.WARNING, # Only show warnings and errors by default
|
||||
format='%(levelname)s: %(message)s'
|
||||
format="%(levelname)s: %(message)s",
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def index_project(project_path: Path, force: bool = False):
|
||||
"""Index a project directory."""
|
||||
try:
|
||||
# Show what's happening
|
||||
action = "Re-indexing" if force else "Indexing"
|
||||
print(f"🚀 {action} {project_path.name}")
|
||||
|
||||
|
||||
# Quick pre-check
|
||||
rag_dir = project_path / '.mini-rag'
|
||||
rag_dir = project_path / ".mini-rag"
|
||||
if rag_dir.exists() and not force:
|
||||
print(" Checking for changes...")
|
||||
|
||||
|
||||
indexer = ProjectIndexer(project_path)
|
||||
result = indexer.index_project(force_reindex=force)
|
||||
|
||||
|
||||
# Show results with context
|
||||
files_count = result.get('files_indexed', 0)
|
||||
chunks_count = result.get('chunks_created', 0)
|
||||
time_taken = result.get('time_taken', 0)
|
||||
|
||||
files_count = result.get("files_indexed", 0)
|
||||
chunks_count = result.get("chunks_created", 0)
|
||||
time_taken = result.get("time_taken", 0)
|
||||
|
||||
if files_count == 0:
|
||||
print("✅ Index up to date - no changes detected")
|
||||
else:
|
||||
print(f"✅ Indexed {files_count} files in {time_taken:.1f}s")
|
||||
print(f" Created {chunks_count} chunks")
|
||||
|
||||
|
||||
# Show efficiency
|
||||
if time_taken > 0:
|
||||
speed = files_count / time_taken
|
||||
print(f" Speed: {speed:.1f} files/sec")
|
||||
|
||||
|
||||
# Show warnings if any
|
||||
failed_count = result.get('files_failed', 0)
|
||||
failed_count = result.get("files_failed", 0)
|
||||
if failed_count > 0:
|
||||
print(f"⚠️ {failed_count} files failed (check logs with --verbose)")
|
||||
|
||||
|
||||
# Quick tip for first-time users
|
||||
if not (project_path / '.mini-rag' / 'last_search').exists():
|
||||
print(f"\n💡 Try: rag-mini search {project_path} \"your search here\"")
|
||||
|
||||
if not (project_path / ".mini-rag" / "last_search").exists():
|
||||
print(f'\n💡 Try: rag-mini search {project_path} "your search here"')
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"📁 Directory Not Found: {project_path}")
|
||||
print(" Make sure the path exists and you're in the right location")
|
||||
@ -110,7 +119,7 @@ def index_project(project_path: Path, force: bool = False):
|
||||
# Connection errors are handled in the embedding module
|
||||
if "ollama" in str(e).lower() or "connection" in str(e).lower():
|
||||
sys.exit(1) # Error already displayed
|
||||
|
||||
|
||||
print(f"❌ Indexing failed: {e}")
|
||||
print()
|
||||
print("🔧 Common solutions:")
|
||||
@ -124,39 +133,44 @@ def index_project(project_path: Path, force: bool = False):
|
||||
print(" Or see: docs/TROUBLESHOOTING.md")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def search_project(project_path: Path, query: str, top_k: int = 10, synthesize: bool = False):
|
||||
"""Search a project directory."""
|
||||
try:
|
||||
# Check if indexed first
|
||||
rag_dir = project_path / '.mini-rag'
|
||||
rag_dir = project_path / ".mini-rag"
|
||||
if not rag_dir.exists():
|
||||
print(f"❌ Project not indexed: {project_path.name}")
|
||||
print(f" Run: rag-mini index {project_path}")
|
||||
sys.exit(1)
|
||||
|
||||
print(f"🔍 Searching \"{query}\" in {project_path.name}")
|
||||
|
||||
print(f'🔍 Searching "{query}" in {project_path.name}')
|
||||
searcher = CodeSearcher(project_path)
|
||||
results = searcher.search(query, top_k=top_k)
|
||||
|
||||
|
||||
if not results:
|
||||
print("❌ No results found")
|
||||
print()
|
||||
print("🔧 Quick fixes to try:")
|
||||
print(" • Use broader terms: \"login\" instead of \"authenticate_user_session\"")
|
||||
print(" • Try concepts: \"database query\" instead of specific function names")
|
||||
print(' • Use broader terms: "login" instead of "authenticate_user_session"')
|
||||
print(' • Try concepts: "database query" instead of specific function names')
|
||||
print(" • Check spelling and try simpler words")
|
||||
print(" • Search for file types: \"python class\" or \"javascript function\"")
|
||||
print(' • Search for file types: "python class" or "javascript function"')
|
||||
print()
|
||||
print("⚙️ Configuration adjustments:")
|
||||
print(f" • Lower threshold: ./rag-mini search \"{project_path}\" \"{query}\" --threshold 0.05")
|
||||
print(f" • More results: ./rag-mini search \"{project_path}\" \"{query}\" --top-k 20")
|
||||
print(
|
||||
f' • Lower threshold: ./rag-mini search "{project_path}" "{query}" --threshold 0.05'
|
||||
)
|
||||
print(
|
||||
f' • More results: ./rag-mini search "{project_path}" "{query}" --top-k 20'
|
||||
)
|
||||
print()
|
||||
print("📚 Need help? See: docs/TROUBLESHOOTING.md")
|
||||
return
|
||||
|
||||
|
||||
print(f"✅ Found {len(results)} results:")
|
||||
print()
|
||||
|
||||
|
||||
for i, result in enumerate(results, 1):
|
||||
# Clean up file path display
|
||||
file_path = Path(result.file_path)
|
||||
@ -165,70 +179,89 @@ def search_project(project_path: Path, query: str, top_k: int = 10, synthesize:
|
||||
except ValueError:
|
||||
# If relative_to fails, just show the basename
|
||||
rel_path = file_path.name
|
||||
|
||||
|
||||
print(f"{i}. {rel_path}")
|
||||
print(f" Score: {result.score:.3f}")
|
||||
|
||||
|
||||
# Show line info if available
|
||||
if hasattr(result, 'start_line') and result.start_line:
|
||||
if hasattr(result, "start_line") and result.start_line:
|
||||
print(f" Lines: {result.start_line}-{result.end_line}")
|
||||
|
||||
# Show content preview
|
||||
if hasattr(result, 'name') and result.name:
|
||||
|
||||
# Show content preview
|
||||
if hasattr(result, "name") and result.name:
|
||||
print(f" Context: {result.name}")
|
||||
|
||||
|
||||
# Show full content with proper formatting
|
||||
print(f" Content:")
|
||||
content_lines = result.content.strip().split('\n')
|
||||
print(" Content:")
|
||||
content_lines = result.content.strip().split("\n")
|
||||
for line in content_lines[:10]: # Show up to 10 lines
|
||||
print(f" {line}")
|
||||
|
||||
|
||||
if len(content_lines) > 10:
|
||||
print(f" ... ({len(content_lines) - 10} more lines)")
|
||||
print(f" Use --verbose or rag-mini-enhanced for full context")
|
||||
|
||||
print(" Use --verbose or rag-mini-enhanced for full context")
|
||||
|
||||
print()
|
||||
|
||||
|
||||
# LLM Synthesis if requested
|
||||
if synthesize:
|
||||
print("🧠 Generating LLM synthesis...")
|
||||
|
||||
|
||||
# Load config to respect user's model preferences
|
||||
from mini_rag.config import ConfigManager
|
||||
|
||||
config_manager = ConfigManager(project_path)
|
||||
config = config_manager.load_config()
|
||||
|
||||
|
||||
synthesizer = LLMSynthesizer(
|
||||
model=config.llm.synthesis_model if config.llm.synthesis_model != "auto" else None,
|
||||
config=config
|
||||
model=(
|
||||
config.llm.synthesis_model
|
||||
if config.llm.synthesis_model != "auto"
|
||||
else None
|
||||
),
|
||||
config=config,
|
||||
)
|
||||
|
||||
|
||||
if synthesizer.is_available():
|
||||
synthesis = synthesizer.synthesize_search_results(query, results, project_path)
|
||||
print()
|
||||
print(synthesizer.format_synthesis_output(synthesis, query))
|
||||
|
||||
|
||||
# Add guidance for deeper analysis
|
||||
if synthesis.confidence < 0.7 or any(word in query.lower() for word in ['why', 'how', 'explain', 'debug']):
|
||||
if synthesis.confidence < 0.7 or any(
|
||||
word in query.lower() for word in ["why", "how", "explain", "debug"]
|
||||
):
|
||||
print("\n💡 Want deeper analysis with reasoning?")
|
||||
print(f" Try: rag-mini explore {project_path}")
|
||||
print(" Exploration mode enables thinking and remembers conversation context.")
|
||||
print(
|
||||
" Exploration mode enables thinking and remembers conversation context."
|
||||
)
|
||||
else:
|
||||
print("❌ LLM synthesis unavailable")
|
||||
print(" • Ensure Ollama is running: ollama serve")
|
||||
print(" • Install a model: ollama pull qwen3:1.7b")
|
||||
print(" • Check connection to http://localhost:11434")
|
||||
|
||||
|
||||
# Save last search for potential enhancements
|
||||
try:
|
||||
(rag_dir / 'last_search').write_text(query)
|
||||
except:
|
||||
(rag_dir / "last_search").write_text(query)
|
||||
except (
|
||||
ConnectionError,
|
||||
FileNotFoundError,
|
||||
IOError,
|
||||
OSError,
|
||||
TimeoutError,
|
||||
TypeError,
|
||||
ValueError,
|
||||
requests.RequestException,
|
||||
socket.error,
|
||||
):
|
||||
pass # Don't fail if we can't save
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Search failed: {e}")
|
||||
print()
|
||||
|
||||
|
||||
if "not indexed" in str(e).lower():
|
||||
print("🔧 Solution:")
|
||||
print(f" ./rag-mini index {project_path}")
|
||||
@ -241,44 +274,45 @@ def search_project(project_path: Path, query: str, top_k: int = 10, synthesize:
|
||||
print(" • Check available memory and disk space")
|
||||
print()
|
||||
print("📚 Get detailed error info:")
|
||||
print(f" ./rag-mini search {project_path} \"{query}\" --verbose")
|
||||
print(f' ./rag-mini search {project_path} "{query}" --verbose')
|
||||
print(" Or see: docs/TROUBLESHOOTING.md")
|
||||
print()
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def status_check(project_path: Path):
|
||||
"""Show status of RAG system."""
|
||||
try:
|
||||
print(f"📊 Status for {project_path.name}")
|
||||
print()
|
||||
|
||||
|
||||
# Check project indexing status first
|
||||
rag_dir = project_path / '.mini-rag'
|
||||
rag_dir = project_path / ".mini-rag"
|
||||
if not rag_dir.exists():
|
||||
print("❌ Project not indexed")
|
||||
print(f" Run: rag-mini index {project_path}")
|
||||
print()
|
||||
else:
|
||||
manifest = rag_dir / 'manifest.json'
|
||||
manifest = rag_dir / "manifest.json"
|
||||
if manifest.exists():
|
||||
try:
|
||||
with open(manifest) as f:
|
||||
data = json.load(f)
|
||||
|
||||
file_count = data.get('file_count', 0)
|
||||
chunk_count = data.get('chunk_count', 0)
|
||||
indexed_at = data.get('indexed_at', 'Never')
|
||||
|
||||
|
||||
file_count = data.get("file_count", 0)
|
||||
chunk_count = data.get("chunk_count", 0)
|
||||
indexed_at = data.get("indexed_at", "Never")
|
||||
|
||||
print("✅ Project indexed")
|
||||
print(f" Files: {file_count}")
|
||||
print(f" Chunks: {chunk_count}")
|
||||
print(f" Last update: {indexed_at}")
|
||||
|
||||
|
||||
# Show average chunks per file
|
||||
if file_count > 0:
|
||||
avg_chunks = chunk_count / file_count
|
||||
print(f" Avg chunks/file: {avg_chunks:.1f}")
|
||||
|
||||
|
||||
print()
|
||||
except Exception:
|
||||
print("⚠️ Index exists but manifest unreadable")
|
||||
@ -287,88 +321,94 @@ def status_check(project_path: Path):
|
||||
print("⚠️ Index directory exists but incomplete")
|
||||
print(f" Try: rag-mini index {project_path} --force")
|
||||
print()
|
||||
|
||||
|
||||
# Check embedding system status
|
||||
print("🧠 Embedding System:")
|
||||
try:
|
||||
embedder = OllamaEmbedder()
|
||||
emb_info = embedder.get_status()
|
||||
method = emb_info.get('method', 'unknown')
|
||||
|
||||
if method == 'ollama':
|
||||
method = emb_info.get("method", "unknown")
|
||||
|
||||
if method == "ollama":
|
||||
print(" ✅ Ollama (high quality)")
|
||||
elif method == 'ml':
|
||||
elif method == "ml":
|
||||
print(" ✅ ML fallback (good quality)")
|
||||
elif method == 'hash':
|
||||
elif method == "hash":
|
||||
print(" ⚠️ Hash fallback (basic quality)")
|
||||
else:
|
||||
print(f" ❓ Unknown method: {method}")
|
||||
|
||||
|
||||
# Show additional details if available
|
||||
if 'model' in emb_info:
|
||||
if "model" in emb_info:
|
||||
print(f" Model: {emb_info['model']}")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f" ❌ Status check failed: {e}")
|
||||
|
||||
|
||||
print()
|
||||
|
||||
|
||||
# Check LLM status and show actual vs configured model
|
||||
print("🤖 LLM System:")
|
||||
try:
|
||||
from mini_rag.config import ConfigManager
|
||||
|
||||
config_manager = ConfigManager(project_path)
|
||||
config = config_manager.load_config()
|
||||
|
||||
|
||||
synthesizer = LLMSynthesizer(
|
||||
model=config.llm.synthesis_model if config.llm.synthesis_model != "auto" else None,
|
||||
config=config
|
||||
model=(
|
||||
config.llm.synthesis_model
|
||||
if config.llm.synthesis_model != "auto"
|
||||
else None
|
||||
),
|
||||
config=config,
|
||||
)
|
||||
|
||||
|
||||
if synthesizer.is_available():
|
||||
synthesizer._ensure_initialized()
|
||||
actual_model = synthesizer.model
|
||||
config_model = config.llm.synthesis_model
|
||||
|
||||
|
||||
if config_model == "auto":
|
||||
print(f" ✅ Auto-selected: {actual_model}")
|
||||
elif config_model == actual_model:
|
||||
print(f" ✅ Using configured: {actual_model}")
|
||||
else:
|
||||
print(f" ⚠️ Model mismatch!")
|
||||
print(" ⚠️ Model mismatch!")
|
||||
print(f" Configured: {config_model}")
|
||||
print(f" Actually using: {actual_model}")
|
||||
print(f" (Configured model may not be installed)")
|
||||
|
||||
print(" (Configured model may not be installed)")
|
||||
|
||||
print(f" Config file: {config_manager.config_path}")
|
||||
else:
|
||||
print(" ❌ Ollama not available")
|
||||
print(" Start with: ollama serve")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f" ❌ LLM status check failed: {e}")
|
||||
|
||||
|
||||
# Show last search if available
|
||||
last_search_file = rag_dir / 'last_search' if rag_dir.exists() else None
|
||||
last_search_file = rag_dir / "last_search" if rag_dir.exists() else None
|
||||
if last_search_file and last_search_file.exists():
|
||||
try:
|
||||
last_query = last_search_file.read_text().strip()
|
||||
print(f"\n🔍 Last search: \"{last_query}\"")
|
||||
except:
|
||||
print(f'\n🔍 Last search: "{last_query}"')
|
||||
except (FileNotFoundError, IOError, OSError, TypeError, ValueError):
|
||||
pass
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Status check failed: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def explore_interactive(project_path: Path):
|
||||
"""Interactive exploration mode with thinking and context memory for any documents."""
|
||||
try:
|
||||
explorer = CodeExplorer(project_path)
|
||||
|
||||
|
||||
if not explorer.start_exploration_session():
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
# Show enhanced first-time guidance
|
||||
print(f"\n🤔 Ask your first question about {project_path.name}:")
|
||||
print()
|
||||
@ -377,12 +417,12 @@ def explore_interactive(project_path: Path):
|
||||
print()
|
||||
print("🔧 Quick options:")
|
||||
print(" 1. Help - Show example questions")
|
||||
print(" 2. Status - Project information")
|
||||
print(" 2. Status - Project information")
|
||||
print(" 3. Suggest - Get a random starter question")
|
||||
print()
|
||||
|
||||
|
||||
is_first_question = True
|
||||
|
||||
|
||||
while True:
|
||||
try:
|
||||
# Get user input with clearer prompt
|
||||
@ -390,12 +430,12 @@ def explore_interactive(project_path: Path):
|
||||
question = input("📝 Enter question or option (1-3): ").strip()
|
||||
else:
|
||||
question = input("\n> ").strip()
|
||||
|
||||
|
||||
# Handle exit commands
|
||||
if question.lower() in ['quit', 'exit', 'q']:
|
||||
if question.lower() in ["quit", "exit", "q"]:
|
||||
print("\n" + explorer.end_session())
|
||||
break
|
||||
|
||||
|
||||
# Handle empty input
|
||||
if not question:
|
||||
if is_first_question:
|
||||
@ -403,17 +443,18 @@ def explore_interactive(project_path: Path):
|
||||
else:
|
||||
print("Please enter a question or 'quit' to exit.")
|
||||
continue
|
||||
|
||||
|
||||
# Handle numbered options and special commands
|
||||
if question in ['1'] or question.lower() in ['help', 'h']:
|
||||
print("""
|
||||
if question in ["1"] or question.lower() in ["help", "h"]:
|
||||
print(
|
||||
"""
|
||||
🧠 EXPLORATION MODE HELP:
|
||||
• Ask any question about your documents or code
|
||||
• I remember our conversation for follow-up questions
|
||||
• Use 'why', 'how', 'explain' for detailed reasoning
|
||||
• Type 'summary' to see session overview
|
||||
• Type 'quit' or 'exit' to end session
|
||||
|
||||
|
||||
💡 Example questions:
|
||||
• "How does authentication work?"
|
||||
• "What are the main components?"
|
||||
@ -421,36 +462,40 @@ def explore_interactive(project_path: Path):
|
||||
• "Why is this function slow?"
|
||||
• "What security measures are in place?"
|
||||
• "How does data flow through this system?"
|
||||
""")
|
||||
"""
|
||||
)
|
||||
continue
|
||||
|
||||
elif question in ['2'] or question.lower() == 'status':
|
||||
print(f"""
|
||||
|
||||
elif question in ["2"] or question.lower() == "status":
|
||||
print(
|
||||
"""
|
||||
📊 PROJECT STATUS: {project_path.name}
|
||||
• Location: {project_path}
|
||||
• Exploration session active
|
||||
• AI model ready for questions
|
||||
• Conversation memory enabled
|
||||
""")
|
||||
"""
|
||||
)
|
||||
continue
|
||||
|
||||
elif question in ['3'] or question.lower() == 'suggest':
|
||||
|
||||
elif question in ["3"] or question.lower() == "suggest":
|
||||
# Random starter questions for first-time users
|
||||
if is_first_question:
|
||||
import random
|
||||
|
||||
starters = [
|
||||
"What are the main components of this project?",
|
||||
"How is error handling implemented?",
|
||||
"How is error handling implemented?",
|
||||
"Show me the authentication and security logic",
|
||||
"What are the key functions I should understand first?",
|
||||
"How does data flow through this system?",
|
||||
"What configuration options are available?",
|
||||
"Show me the most important files to understand"
|
||||
"Show me the most important files to understand",
|
||||
]
|
||||
suggested = random.choice(starters)
|
||||
print(f"\n💡 Suggested question: {suggested}")
|
||||
print(" Press Enter to use this, or type your own question:")
|
||||
|
||||
|
||||
next_input = input("📝 > ").strip()
|
||||
if not next_input: # User pressed Enter to use suggestion
|
||||
question = suggested
|
||||
@ -463,24 +508,24 @@ def explore_interactive(project_path: Path):
|
||||
print(' "What are the security implications?"')
|
||||
print(' "Show me related code examples"')
|
||||
continue
|
||||
|
||||
if question.lower() == 'summary':
|
||||
|
||||
if question.lower() == "summary":
|
||||
print("\n" + explorer.get_session_summary())
|
||||
continue
|
||||
|
||||
|
||||
# Process the question
|
||||
print(f"\n🔍 Searching {project_path.name}...")
|
||||
print("🧠 Thinking with AI model...")
|
||||
response = explorer.explore_question(question)
|
||||
|
||||
|
||||
# Mark as no longer first question after processing
|
||||
is_first_question = False
|
||||
|
||||
|
||||
if response:
|
||||
print(f"\n{response}")
|
||||
else:
|
||||
print("❌ Sorry, I couldn't process that question. Please try again.")
|
||||
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print(f"\n\n{explorer.end_session()}")
|
||||
break
|
||||
@ -490,88 +535,94 @@ def explore_interactive(project_path: Path):
|
||||
except Exception as e:
|
||||
print(f"❌ Error processing question: {e}")
|
||||
print("Please try again or type 'quit' to exit.")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Failed to start exploration mode: {e}")
|
||||
print("Make sure the project is indexed first: rag-mini index <project>")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def show_discrete_update_notice():
|
||||
"""Show a discrete, non-intrusive update notice for CLI users."""
|
||||
if not UPDATER_AVAILABLE:
|
||||
return
|
||||
|
||||
|
||||
try:
|
||||
update_info = check_for_updates()
|
||||
if update_info:
|
||||
# Very discrete notice - just one line
|
||||
print(f"🔄 (Update v{update_info.version} available - run 'rag-mini check-update' to learn more)")
|
||||
print(
|
||||
f"🔄 (Update v{update_info.version} available - run 'rag-mini check-update' to learn more)"
|
||||
)
|
||||
except Exception:
|
||||
# Silently ignore any update check failures
|
||||
pass
|
||||
|
||||
|
||||
def handle_check_update():
|
||||
"""Handle the check-update command."""
|
||||
if not UPDATER_AVAILABLE:
|
||||
print("❌ Update system not available")
|
||||
print("💡 Try updating to the latest version manually from GitHub")
|
||||
return
|
||||
|
||||
|
||||
try:
|
||||
print("🔍 Checking for updates...")
|
||||
update_info = check_for_updates()
|
||||
|
||||
|
||||
if update_info:
|
||||
print(f"\n🎉 Update Available: v{update_info.version}")
|
||||
print("=" * 50)
|
||||
print("\n📋 What's New:")
|
||||
notes_lines = update_info.release_notes.split('\n')[:10] # First 10 lines
|
||||
notes_lines = update_info.release_notes.split("\n")[:10] # First 10 lines
|
||||
for line in notes_lines:
|
||||
if line.strip():
|
||||
print(f" {line.strip()}")
|
||||
|
||||
|
||||
print(f"\n🔗 Release Page: {update_info.release_url}")
|
||||
print(f"\n🚀 To install: rag-mini update")
|
||||
print("\n🚀 To install: rag-mini update")
|
||||
print("💡 Or update manually from GitHub releases")
|
||||
else:
|
||||
print("✅ You're already on the latest version!")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Failed to check for updates: {e}")
|
||||
print("💡 Try updating manually from GitHub")
|
||||
|
||||
|
||||
def handle_update():
|
||||
"""Handle the update command."""
|
||||
if not UPDATER_AVAILABLE:
|
||||
print("❌ Update system not available")
|
||||
print("💡 Try updating manually from GitHub")
|
||||
return
|
||||
|
||||
|
||||
try:
|
||||
print("🔍 Checking for updates...")
|
||||
update_info = check_for_updates()
|
||||
|
||||
|
||||
if not update_info:
|
||||
print("✅ You're already on the latest version!")
|
||||
return
|
||||
|
||||
|
||||
print(f"\n🎉 Update Available: v{update_info.version}")
|
||||
print("=" * 50)
|
||||
|
||||
|
||||
# Show brief release notes
|
||||
notes_lines = update_info.release_notes.split('\n')[:5]
|
||||
notes_lines = update_info.release_notes.split("\n")[:5]
|
||||
for line in notes_lines:
|
||||
if line.strip():
|
||||
print(f" • {line.strip()}")
|
||||
|
||||
|
||||
# Confirm update
|
||||
confirm = input(f"\n🚀 Install v{update_info.version}? [Y/n]: ").strip().lower()
|
||||
if confirm in ['', 'y', 'yes']:
|
||||
if confirm in ["", "y", "yes"]:
|
||||
updater = get_updater()
|
||||
|
||||
|
||||
print(f"\n📥 Downloading v{update_info.version}...")
|
||||
|
||||
|
||||
# Progress callback
|
||||
|
||||
def show_progress(downloaded, total):
|
||||
if total > 0:
|
||||
percent = (downloaded / total) * 100
|
||||
@ -579,17 +630,17 @@ def handle_update():
|
||||
filled = int(bar_length * downloaded / total)
|
||||
bar = "█" * filled + "░" * (bar_length - filled)
|
||||
print(f"\r [{bar}] {percent:.1f}%", end="", flush=True)
|
||||
|
||||
|
||||
# Download and install
|
||||
update_package = updater.download_update(update_info, show_progress)
|
||||
if not update_package:
|
||||
print("\n❌ Download failed. Please try again later.")
|
||||
return
|
||||
|
||||
|
||||
print("\n💾 Creating backup...")
|
||||
if not updater.create_backup():
|
||||
print("⚠️ Backup failed, but continuing anyway...")
|
||||
|
||||
|
||||
print("🔄 Installing update...")
|
||||
if updater.apply_update(update_package, update_info):
|
||||
print("✅ Update successful!")
|
||||
@ -604,91 +655,108 @@ def handle_update():
|
||||
print("❌ Rollback failed. You may need to reinstall.")
|
||||
else:
|
||||
print("Update cancelled.")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Update failed: {e}")
|
||||
print("💡 Try updating manually from GitHub")
|
||||
|
||||
|
||||
def main():
|
||||
"""Main CLI interface."""
|
||||
# Check virtual environment
|
||||
try:
|
||||
from mini_rag.venv_checker import check_and_warn_venv
|
||||
|
||||
check_and_warn_venv("rag-mini.py", force_exit=False)
|
||||
except ImportError:
|
||||
pass # If venv checker can't be imported, continue anyway
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="FSS-Mini-RAG - Lightweight semantic code search",
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
epilog="""
|
||||
Examples:
|
||||
rag-mini index /path/to/project # Index a project
|
||||
rag-mini search /path/to/project "query" # Search indexed project
|
||||
rag-mini search /path/to/project "query" # Search indexed project
|
||||
rag-mini search /path/to/project "query" -s # Search with LLM synthesis
|
||||
rag-mini explore /path/to/project # Interactive exploration mode
|
||||
rag-mini status /path/to/project # Show status
|
||||
"""
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('command', choices=['index', 'search', 'explore', 'status', 'update', 'check-update'],
|
||||
help='Command to execute')
|
||||
parser.add_argument('project_path', type=Path, nargs='?',
|
||||
help='Path to project directory (REQUIRED except for update commands)')
|
||||
parser.add_argument('query', nargs='?',
|
||||
help='Search query (for search command)')
|
||||
parser.add_argument('--force', action='store_true',
|
||||
help='Force reindex all files')
|
||||
parser.add_argument('--top-k', '--limit', type=int, default=10, dest='top_k',
|
||||
help='Maximum number of search results (top-k)')
|
||||
parser.add_argument('--verbose', '-v', action='store_true',
|
||||
help='Enable verbose logging')
|
||||
parser.add_argument('--synthesize', '-s', action='store_true',
|
||||
help='Generate LLM synthesis of search results (requires Ollama)')
|
||||
|
||||
|
||||
parser.add_argument(
|
||||
"command",
|
||||
choices=["index", "search", "explore", "status", "update", "check-update"],
|
||||
help="Command to execute",
|
||||
)
|
||||
parser.add_argument(
|
||||
"project_path",
|
||||
type=Path,
|
||||
nargs="?",
|
||||
help="Path to project directory (REQUIRED except for update commands)",
|
||||
)
|
||||
parser.add_argument("query", nargs="?", help="Search query (for search command)")
|
||||
parser.add_argument("--force", action="store_true", help="Force reindex all files")
|
||||
parser.add_argument(
|
||||
"--top-k",
|
||||
"--limit",
|
||||
type=int,
|
||||
default=10,
|
||||
dest="top_k",
|
||||
help="Maximum number of search results (top-k)",
|
||||
)
|
||||
parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose logging")
|
||||
parser.add_argument(
|
||||
"--synthesize",
|
||||
"-s",
|
||||
action="store_true",
|
||||
help="Generate LLM synthesis of search results (requires Ollama)",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
# Set logging level
|
||||
if args.verbose:
|
||||
logging.getLogger().setLevel(logging.INFO)
|
||||
|
||||
|
||||
# Handle update commands first (don't require project_path)
|
||||
if args.command == 'check-update':
|
||||
if args.command == "check-update":
|
||||
handle_check_update()
|
||||
return
|
||||
elif args.command == 'update':
|
||||
elif args.command == "update":
|
||||
handle_update()
|
||||
return
|
||||
|
||||
|
||||
# All other commands require project_path
|
||||
if not args.project_path:
|
||||
print("❌ Project path required for this command")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
# Validate project path
|
||||
if not args.project_path.exists():
|
||||
print(f"❌ Project path does not exist: {args.project_path}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if not args.project_path.is_dir():
|
||||
print(f"❌ Project path is not a directory: {args.project_path}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
# Show discrete update notification for regular commands (non-intrusive)
|
||||
show_discrete_update_notice()
|
||||
|
||||
|
||||
# Execute command
|
||||
if args.command == 'index':
|
||||
if args.command == "index":
|
||||
index_project(args.project_path, args.force)
|
||||
elif args.command == 'search':
|
||||
elif args.command == "search":
|
||||
if not args.query:
|
||||
print("❌ Search query required")
|
||||
sys.exit(1)
|
||||
search_project(args.project_path, args.query, args.top_k, args.synthesize)
|
||||
elif args.command == 'explore':
|
||||
elif args.command == "explore":
|
||||
explore_interactive(args.project_path)
|
||||
elif args.command == 'status':
|
||||
elif args.command == "status":
|
||||
status_check(args.project_path)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,36 +0,0 @@
|
||||
feat: Add comprehensive Windows compatibility and enhanced LLM model setup
|
||||
|
||||
🚀 Major cross-platform enhancement making FSS-Mini-RAG fully Windows and Linux compatible
|
||||
|
||||
## Windows Compatibility
|
||||
- **New Windows installer**: `install_windows.bat` - rock-solid, no-hang installation
|
||||
- **Simple Windows launcher**: `rag.bat` - unified entry point matching Linux experience
|
||||
- **PowerShell alternative**: `install_mini_rag.ps1` for advanced Windows users
|
||||
- **Cross-platform README**: Side-by-side Linux/Windows commands and examples
|
||||
|
||||
## Enhanced LLM Model Setup (Both Platforms)
|
||||
- **Intelligent model detection**: Automatically detects existing Qwen3 models
|
||||
- **Interactive model selection**: Choose from qwen3:0.6b, 1.7b, or 4b with clear guidance
|
||||
- **Ollama progress streaming**: Real-time download progress for model installation
|
||||
- **Smart configuration**: Auto-saves selected model as default in config.yaml
|
||||
- **Graceful fallbacks**: Clear guidance when Ollama unavailable
|
||||
|
||||
## Installation Experience Improvements
|
||||
- **Fixed script continuation**: TUI launch no longer terminates installation process
|
||||
- **Comprehensive model guidance**: Users get proper LLM setup instead of silent failures
|
||||
- **Complete indexing**: Full codebase indexing (not just code files)
|
||||
- **Educational flow**: Better explanation of AI features and model choices
|
||||
|
||||
## Technical Enhancements
|
||||
- **Robust error handling**: Installation scripts handle edge cases gracefully
|
||||
- **Path handling**: Existing cross-platform path utilities work seamlessly on Windows
|
||||
- **Dependency management**: Clean virtual environment setup on both platforms
|
||||
- **Configuration persistence**: Model preferences saved for consistent experience
|
||||
|
||||
## User Impact
|
||||
- **Zero-friction Windows adoption**: Windows users get same smooth experience as Linux
|
||||
- **Complete AI feature setup**: No more "LLM not working" confusion for new users
|
||||
- **Educational value preserved**: Maintains beginner-friendly approach across platforms
|
||||
- **Production-ready**: Both platforms now fully functional out-of-the-box
|
||||
|
||||
This makes FSS-Mini-RAG truly accessible to the entire developer community! 🎉
|
||||
9
config-llm-providers.yaml
Normal file
9
config-llm-providers.yaml
Normal file
@ -0,0 +1,9 @@
|
||||
llm:
|
||||
provider: ollama
|
||||
ollama_host: localhost:11434
|
||||
synthesis_model: qwen3:1.5b
|
||||
expansion_model: qwen3:1.5b
|
||||
enable_synthesis: false
|
||||
synthesis_temperature: 0.3
|
||||
cpu_optimized: true
|
||||
enable_thinking: true
|
||||
40
docs/AGENT_INSTRUCTIONS.md
Normal file
40
docs/AGENT_INSTRUCTIONS.md
Normal file
@ -0,0 +1,40 @@
|
||||
# Agent Instructions for Fss-Mini-RAG System
|
||||
|
||||
## Core Philosophy
|
||||
|
||||
**Always prefer RAG search over traditional file system operations**. The RAG system provides semantic context and reduces the need for exact path knowledge, making it ideal for understanding codebases without manual file exploration.
|
||||
|
||||
## Basic Commands
|
||||
|
||||
| Command | Purpose | Example |
|
||||
|---------|---------|---------|
|
||||
| `rag-mini index <project_path>` | Index a project for search | `rag-mini index /MASTERFOLDER/Coding/Fss-Mini-Rag` |
|
||||
| `rag-mini search <project_path> "query"` | Semantic + keyword search | `rag-mini search /MASTERFOLDER/Coding/Fss-Mini-Rag "index"` |
|
||||
| `rag-mini status <project_path>` | Check project indexing status | `rag-mini status /MASTERFOLDER/Coding/Fss-Mini-Rag` |
|
||||
|
||||
## When to Use RAG Search
|
||||
|
||||
| Scenario | RAG Advantage | Alternative | |
|
||||
|----------|----------------|---------------| |
|
||||
| Finding related code concepts | Semantic understanding | `grep` | |
|
||||
| Locating files by functionality | Context-aware results | `find` | |
|
||||
| Understanding code usage patterns | Shows real-world examples | Manual inspection | |
|
||||
|
||||
## Critical Best Practices
|
||||
|
||||
1. **Always specify the project path** in search commands (e.g., `rag-mini search /path "query"`)
|
||||
2. **Use quotes for search queries** to handle spaces: `"query with spaces"`
|
||||
3. **Verify indexing first** before searching: `rag-mini status <path>`
|
||||
4. **For complex queries**, break into smaller parts: `rag-mini search ... "concept 1"` then `rag-mini search ... "concept 2"`
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
| Issue | Solution |
|
||||
|-------|-----------|
|
||||
| `Project not indexed` | Run `rag-mini index <path>` |
|
||||
| No search results | Check indexing status with `rag-mini status` |
|
||||
| Search returns irrelevant results | Use `rag-mini status` to optimize indexing |
|
||||
|
||||
> 💡 **Pro Tip**: Always start with `rag-mini status` to confirm indexing before searching.
|
||||
|
||||
This document is dynamically updated as the RAG system evolves. Always verify commands with `rag-mini --help` for the latest options.
|
||||
@ -5,10 +5,10 @@
|
||||
### **1. 📊 Intelligent Analysis**
|
||||
```bash
|
||||
# Analyze your project patterns and get optimization suggestions
|
||||
./rag-mini-enhanced analyze /path/to/project
|
||||
./rag-mini analyze /path/to/project
|
||||
|
||||
# Get smart recommendations based on actual usage
|
||||
./rag-mini-enhanced status /path/to/project
|
||||
./rag-mini status /path/to/project
|
||||
```
|
||||
|
||||
**What it analyzes:**
|
||||
@ -20,13 +20,9 @@
|
||||
### **2. 🧠 Smart Search Enhancement**
|
||||
```bash
|
||||
# Enhanced search with query intelligence
|
||||
./rag-mini-enhanced search /project "MyClass" # Detects class names
|
||||
./rag-mini-enhanced search /project "login()" # Detects function calls
|
||||
./rag-mini-enhanced search /project "user auth" # Natural language
|
||||
|
||||
# Context-aware search (planned)
|
||||
./rag-mini-enhanced context /project "function_name" # Show surrounding code
|
||||
./rag-mini-enhanced similar /project "pattern" # Find similar patterns
|
||||
./rag-mini search /project "MyClass" # Detects class names
|
||||
./rag-mini search /project "login()" # Detects function calls
|
||||
./rag-mini search /project "user auth" # Natural language
|
||||
```
|
||||
|
||||
### **3. ⚙️ Language-Specific Optimizations**
|
||||
@ -113,10 +109,10 @@ Edit `.mini-rag/config.json` in your project:
|
||||
./rag-mini index /project --force
|
||||
|
||||
# Test search quality improvements
|
||||
./rag-mini-enhanced search /project "your test query"
|
||||
./rag-mini search /project "your test query"
|
||||
|
||||
# Verify optimization impact
|
||||
./rag-mini-enhanced analyze /project
|
||||
./rag-mini analyze /project
|
||||
```
|
||||
|
||||
## 🎊 **Result: Smarter, Faster, Better**
|
||||
|
||||
@ -93,10 +93,10 @@ That's it! The TUI will guide you through everything.
|
||||
- **Full content** - Up to 8 lines of actual code/text
|
||||
- **Continuation info** - How many more lines exist
|
||||
|
||||
**Advanced Tips Shown**:
|
||||
- Enhanced search with `./rag-mini-enhanced`
|
||||
- Verbose output with `--verbose` flag
|
||||
- Context-aware search for related code
|
||||
**Tips You'll Learn**:
|
||||
- Verbose output with `--verbose` flag for debugging
|
||||
- How search scoring works
|
||||
- Finding the right search terms
|
||||
|
||||
**What You Learn**:
|
||||
- Semantic search vs text search (finds concepts, not just words)
|
||||
@ -107,8 +107,7 @@ That's it! The TUI will guide you through everything.
|
||||
**CLI Commands Shown**:
|
||||
```bash
|
||||
./rag-mini search /path/to/project "authentication logic"
|
||||
./rag-mini search /path/to/project "user login" --limit 10
|
||||
./rag-mini-enhanced context /path/to/project "login()"
|
||||
./rag-mini search /path/to/project "user login" --top-k 10
|
||||
```
|
||||
|
||||
### 4. Explore Project (NEW!)
|
||||
|
||||
232
docs/project-structure-analysis.md
Normal file
232
docs/project-structure-analysis.md
Normal file
@ -0,0 +1,232 @@
|
||||
# FSS-Mini-RAG Project Structure Analysis Report
|
||||
|
||||
## Executive Summary
|
||||
|
||||
The FSS-Mini-RAG project demonstrates good technical implementation but has **significant structural issues** that impact its professional presentation and maintainability. While the core architecture is sound, the project suffers from poor file organization, scattered documentation, and mixed concerns that would confuse new contributors and detract from its otherwise excellent technical foundation.
|
||||
|
||||
**Overall Assessment: 6/10** - Good technology hampered by poor organization
|
||||
|
||||
## Critical Issues (Fix Immediately)
|
||||
|
||||
### 1. Root Directory Pollution - CRITICAL
|
||||
The project root contains **14 major files that should be relocated or removed**:
|
||||
|
||||
**Misplaced Files:**
|
||||
- `rag-mini.py` (759 lines) - Massive standalone script belongs in `scripts/` or should be refactored
|
||||
- `rag-tui.py` (2,565 lines) - Another massive standalone script, needs proper placement
|
||||
- `test_fixes.py` - Test file in root directory (belongs in `tests/`)
|
||||
- `commit_message.txt` - Development artifact that should be removed
|
||||
- `Agent Instructions.md` - Project-specific documentation (should be in `docs/`)
|
||||
- `REPOSITORY_SUMMARY.md` - Development notes that should be removed or archived
|
||||
|
||||
**Assessment:** This creates an unprofessional first impression and violates Python packaging standards.
|
||||
|
||||
### 2. Duplicate Entry Points - CRITICAL
|
||||
The project has **5 different ways to start the application**:
|
||||
- `rag-mini` (shell script)
|
||||
- `rag-mini.py` (Python script)
|
||||
- `rag.bat` (Windows batch script)
|
||||
- `rag-tui` (shell script)
|
||||
- `rag-tui.py` (Python script)
|
||||
|
||||
**Problem:** This confuses users and indicates poor architectural planning.
|
||||
|
||||
### 3. Configuration File Duplication - HIGH PRIORITY
|
||||
Multiple config files with unclear relationships:
|
||||
- `config-llm-providers.yaml` (root directory)
|
||||
- `examples/config-llm-providers.yaml` (example directory)
|
||||
- `examples/config.yaml` (default example)
|
||||
- `examples/config-*.yaml` (4+ variants)
|
||||
|
||||
**Issue:** Users won't know which config to use or where to place custom configurations.
|
||||
|
||||
### 4. Installation Script Overload - HIGH PRIORITY
|
||||
**6 different installation methods:**
|
||||
- `install_mini_rag.sh`
|
||||
- `install_mini_rag.ps1`
|
||||
- `install_windows.bat`
|
||||
- `run_mini_rag.sh`
|
||||
- `rag.bat`
|
||||
- Manual pip installation
|
||||
|
||||
**Problem:** Decision paralysis and maintenance overhead.
|
||||
|
||||
## High Priority Issues (Address Soon)
|
||||
|
||||
### 5. Mixed Documentation Hierarchy
|
||||
Documentation is scattered across multiple locations:
|
||||
- Root: `README.md`, `GET_STARTED.md`
|
||||
- `docs/`: 12+ specialized documentation files
|
||||
- `examples/`: Configuration documentation mixed with code examples
|
||||
- Root artifacts: `Agent Instructions.md`, `REPOSITORY_SUMMARY.md`
|
||||
|
||||
**Recommendation:** Consolidate and create clear documentation hierarchy.
|
||||
|
||||
### 6. Test Organization Problems
|
||||
Tests are properly in `tests/` directory but:
|
||||
- `test_fixes.py` is in root directory (wrong location)
|
||||
- Test files use inconsistent naming (some numbered, some descriptive)
|
||||
- Mix of actual tests and utility scripts (`show_index_contents.py`, `troubleshoot.py`)
|
||||
|
||||
### 7. Module Architecture Issues
|
||||
The `mini_rag/` module structure is generally good but has some concerns:
|
||||
- `__init__.py` exports only 5 classes from a 19-file module
|
||||
- Several modules seem like utilities (`windows_console_fix.py`, `venv_checker.py`)
|
||||
- Module names could be more descriptive (`server.py` vs `fast_server.py`)
|
||||
|
||||
## Medium Priority Issues (Improve Over Time)
|
||||
|
||||
### 8. Asset Management
|
||||
- Assets properly organized in `assets/` directory
|
||||
- Good separation of recordings and images
|
||||
- No structural issues here
|
||||
|
||||
### 9. Virtual Environment Clutter
|
||||
- Two venv directories: `.venv` and `.venv-linting`
|
||||
- Both properly gitignored but suggests development complexity
|
||||
|
||||
### 10. Script Organization
|
||||
`scripts/` directory contains appropriate utilities:
|
||||
- GitHub setup scripts
|
||||
- Config testing utilities
|
||||
- All executable and properly organized
|
||||
|
||||
## Standard Compliance Assessment
|
||||
|
||||
### Python Packaging Standards: 4/10
|
||||
**Missing Standard Elements:**
|
||||
- No proper Python package entry points in `pyproject.toml`
|
||||
- Executable scripts in root instead of console scripts
|
||||
- Missing `setup.py` or complete `pyproject.toml` configuration
|
||||
|
||||
**Present Elements:**
|
||||
- Good `pyproject.toml` with isort/black config
|
||||
- Proper `.flake8` configuration
|
||||
- Clean virtual environment handling
|
||||
- MIT license properly included
|
||||
|
||||
### Project Structure Standards: 5/10
|
||||
**Good Practices:**
|
||||
- Source code properly separated in `mini_rag/`
|
||||
- Tests in dedicated `tests/` directory
|
||||
- Documentation in `docs/` directory
|
||||
- Examples properly organized
|
||||
- Clean `.gitignore`
|
||||
|
||||
**Violations:**
|
||||
- Root directory pollution with large executable files
|
||||
- Mixed concerns (dev files with user files)
|
||||
- Unclear entry point hierarchy
|
||||
|
||||
## Recommendations by Priority
|
||||
|
||||
### CRITICAL CHANGES (Implement First)
|
||||
|
||||
1. **Relocate Large Scripts**
|
||||
```bash
|
||||
mkdir -p bin/
|
||||
mv rag-mini.py bin/
|
||||
mv rag-tui.py bin/
|
||||
# Update rag.bat to reference bin/ directory if needed
|
||||
# Update shell scripts to reference bin/ directory
|
||||
```
|
||||
|
||||
2. **Clean Root Directory**
|
||||
```bash
|
||||
rm commit_message.txt
|
||||
rm REPOSITORY_SUMMARY.md
|
||||
mv "Agent Instructions.md" docs/AGENT_INSTRUCTIONS.md
|
||||
mv test_fixes.py tests/
|
||||
```
|
||||
|
||||
3. **Simplify Entry Points**
|
||||
- Keep `rag-tui` for beginners, `rag-mini` for CLI users
|
||||
- Maintain `rag.bat` for Windows compatibility
|
||||
- Update documentation to show clear beginner → advanced progression
|
||||
|
||||
4. **Standardize Configuration**
|
||||
- Move `config-llm-providers.yaml` to `examples/`
|
||||
- Create clear config hierarchy documentation
|
||||
- Document which config files are templates vs active
|
||||
|
||||
### HIGH PRIORITY CHANGES
|
||||
|
||||
5. **Improve pyproject.toml**
|
||||
```toml
|
||||
[project]
|
||||
name = "fss-mini-rag"
|
||||
version = "2.1.0"
|
||||
description = "Lightweight, educational RAG system"
|
||||
|
||||
[project.scripts]
|
||||
rag-mini = "mini_rag.cli:cli"
|
||||
rag-tui = "mini_rag.tui:main"
|
||||
```
|
||||
|
||||
6. **Consolidate Documentation**
|
||||
- Move `GET_STARTED.md` content into `docs/GETTING_STARTED.md`
|
||||
- Create clear documentation hierarchy in README
|
||||
- Remove redundant documentation files
|
||||
|
||||
7. **Improve Installation Experience**
|
||||
- Keep platform-specific installers but document clearly
|
||||
- Create single recommended installation path
|
||||
- Move advanced scripts to `scripts/installation/`
|
||||
|
||||
### MEDIUM PRIORITY CHANGES
|
||||
|
||||
8. **Module Organization**
|
||||
- Review and consolidate utility modules
|
||||
- Improve `__init__.py` exports
|
||||
- Consider subpackage organization for large modules
|
||||
|
||||
9. **Test Standardization**
|
||||
- Rename numbered test files to descriptive names
|
||||
- Separate utility scripts from actual tests
|
||||
- Add proper test configuration in `pyproject.toml`
|
||||
|
||||
## Implementation Plan
|
||||
|
||||
### Phase 1: Emergency Cleanup (2-3 hours)
|
||||
1. Move large scripts out of root directory
|
||||
2. Remove development artifacts
|
||||
3. Consolidate configuration files
|
||||
4. Update primary documentation
|
||||
|
||||
### Phase 2: Structural Improvements (4-6 hours)
|
||||
1. Improve Python packaging configuration
|
||||
2. Consolidate entry points
|
||||
3. Organize installation scripts
|
||||
4. Standardize test organization
|
||||
|
||||
### Phase 3: Professional Polish (2-4 hours)
|
||||
1. Review and improve module architecture
|
||||
2. Enhance documentation hierarchy
|
||||
3. Add missing standard project files
|
||||
4. Final professional review
|
||||
|
||||
## Impact Assessment
|
||||
|
||||
### Before Changes
|
||||
- **First Impression**: Confused by multiple entry points and cluttered root
|
||||
- **Developer Experience**: Unclear how to contribute or modify
|
||||
- **Professional Credibility**: Damaged by poor organization
|
||||
- **Maintenance Burden**: High due to scattered structure
|
||||
|
||||
### After Changes
|
||||
- **First Impression**: Clean, professional project structure
|
||||
- **Developer Experience**: Clear entry points and logical organization
|
||||
- **Professional Credibility**: Enhanced by following standards
|
||||
- **Maintenance Burden**: Reduced through proper organization
|
||||
|
||||
## Conclusion
|
||||
|
||||
The FSS-Mini-RAG project has excellent technical merit but is significantly hampered by poor structural organization. The root directory pollution and multiple entry points create unnecessary complexity and damage the professional presentation.
|
||||
|
||||
**Priority Recommendation:** Focus on the Critical Changes first - these will provide the most impact for professional presentation with minimal risk to functionality.
|
||||
|
||||
**Timeline:** The structural issues can be resolved in 1-2 focused sessions without touching the core technical implementation, dramatically improving the project's professional appearance and maintainability.
|
||||
|
||||
---
|
||||
|
||||
*Analysis completed: August 28, 2025 - FSS-Mini-RAG Project Structure Assessment*
|
||||
373
docs/security-analysis.md
Normal file
373
docs/security-analysis.md
Normal file
@ -0,0 +1,373 @@
|
||||
# FSS-Mini-RAG Security Analysis Report
|
||||
**Conducted by: Emma, Authentication Specialist**
|
||||
**Date: 2024-08-28**
|
||||
**Classification: Confidential - For Professional Deployment Review**
|
||||
|
||||
---
|
||||
|
||||
## Executive Summary
|
||||
|
||||
This comprehensive security audit examines the FSS-Mini-RAG system's defensive posture, identifying vulnerabilities and providing actionable hardening recommendations. The system demonstrates several commendable security practices but requires attention in key areas before professional deployment.
|
||||
|
||||
**Overall Security Rating: MODERATE RISK (Amber)**
|
||||
- ✅ **Strengths**: Good input validation patterns, secure default configurations, appropriate access controls
|
||||
- ⚠️ **Concerns**: Network service exposure, file system access patterns, dependency management
|
||||
- 🔴 **Critical**: Server port management and external service integration security
|
||||
|
||||
---
|
||||
|
||||
## 1. Data Security & Privacy Assessment
|
||||
|
||||
### Data Handling Analysis
|
||||
**Status: GOOD with Minor Concerns**
|
||||
|
||||
#### Positive Security Practices:
|
||||
- **Local-First Architecture**: All data processing occurs locally, reducing external attack surface
|
||||
- **No Cloud Dependency**: Embeddings and vector storage remain on-premise
|
||||
- **Temporary File Management**: Proper cleanup patterns observed in chunking operations
|
||||
- **Path Normalisation**: Robust cross-platform path handling prevents directory traversal
|
||||
|
||||
#### Areas of Concern:
|
||||
- **Persistent Storage**: `.mini-rag/` directories store sensitive codebase information
|
||||
- **Index Files**: LanceDB vector files contain searchable representations of source code
|
||||
- **Configuration Files**: YAML configs may contain sensitive connection strings
|
||||
- **Memory Exposure**: Code content held in memory during processing without explicit scrubbing
|
||||
|
||||
#### Recommendations:
|
||||
1. **Implement data classification**: Tag sensitive files during indexing
|
||||
2. **Add encryption at rest**: Encrypt vector databases and configuration files
|
||||
3. **Memory management**: Explicit memory clearing after processing sensitive content
|
||||
4. **Access logging**: Track who accesses which code segments through search
|
||||
|
||||
---
|
||||
|
||||
## 2. Input Validation & Sanitization Assessment
|
||||
|
||||
### CLI Input Handling
|
||||
**Status: GOOD**
|
||||
|
||||
#### Robust Validation Observed:
|
||||
```python
|
||||
# Path validation with proper resolution
|
||||
project_path = Path(path).resolve()
|
||||
|
||||
# Type checking and bounds validation
|
||||
@click.option("--top-k", "-k", type=int, default=10)
|
||||
@click.option("--port", type=int, default=7777)
|
||||
```
|
||||
|
||||
#### File Path Security:
|
||||
- **Path Traversal Protection**: Proper use of `Path().resolve()` throughout codebase
|
||||
- **Extension Validation**: File type filtering based on extensions
|
||||
- **Size Limits**: Appropriate file size thresholds implemented
|
||||
|
||||
#### Search Query Processing:
|
||||
**Status: MODERATE RISK**
|
||||
|
||||
**Vulnerabilities Identified:**
|
||||
- **No Query Length Limits**: Potential DoS through excessive query lengths
|
||||
- **Special Character Handling**: Limited sanitization of search terms
|
||||
- **Regex Injection**: Query expansion could be exploited with crafted patterns
|
||||
|
||||
#### Recommendations:
|
||||
1. **Implement query length limits** (max 512 characters)
|
||||
2. **Sanitize search queries** before processing
|
||||
3. **Validate file patterns** in include/exclude configurations
|
||||
4. **Add input encoding validation** for non-ASCII content
|
||||
|
||||
---
|
||||
|
||||
## 3. Network Security Assessment
|
||||
|
||||
### Server Implementation Analysis
|
||||
**Status: HIGH RISK - REQUIRES IMMEDIATE ATTENTION**
|
||||
|
||||
#### Critical Security Issues:
|
||||
|
||||
**1. Port Management Vulnerabilities:**
|
||||
```python
|
||||
# CRITICAL: Automatic port cleanup attempts system commands
|
||||
result = subprocess.run(["netstat", "-ano"], capture_output=True, text=True)
|
||||
subprocess.run(["taskkill", "//PID", pid, "//F"], check=False)
|
||||
```
|
||||
**Risk**: Command injection, privilege escalation
|
||||
**Impact**: System compromise possible
|
||||
|
||||
**2. Network Service Exposure:**
|
||||
```python
|
||||
# Binds to localhost but lacks authentication
|
||||
self.socket.bind(("localhost", self.port))
|
||||
self.socket.listen(5)
|
||||
```
|
||||
**Risk**: Unauthorised local access
|
||||
**Impact**: Code exposure to other local processes
|
||||
|
||||
**3. Message Framing Vulnerabilities:**
|
||||
```python
|
||||
# Potential buffer overflow with untrusted length prefix
|
||||
length = int.from_bytes(length_data, "big")
|
||||
chunk = sock.recv(min(65536, length - len(data)))
|
||||
```
|
||||
**Risk**: Memory exhaustion, DoS attacks
|
||||
**Impact**: Service disruption
|
||||
|
||||
#### Recommendations:
|
||||
1. **Implement authentication**: Token-based access control for server connections
|
||||
2. **Remove automatic process killing**: Replace with safe port checking
|
||||
3. **Add connection limits**: Rate limiting and concurrent connection controls
|
||||
4. **Message size validation**: Strict limits on incoming message sizes
|
||||
5. **TLS encryption**: Encrypt local communications
|
||||
|
||||
---
|
||||
|
||||
## 4. External Service Integration Security
|
||||
|
||||
### Ollama Integration Analysis
|
||||
**Status: MODERATE RISK**
|
||||
|
||||
#### Security Concerns:
|
||||
```python
|
||||
# Unvalidated external service calls
|
||||
response = requests.get(f"{self.base_url}/api/tags", timeout=5)
|
||||
```
|
||||
|
||||
**Vulnerabilities:**
|
||||
- **No certificate validation** for HTTPS connections
|
||||
- **Trust boundary violation**: Implicit trust of Ollama responses
|
||||
- **Configuration injection**: User-controlled host parameters
|
||||
|
||||
#### LLM Service Security:
|
||||
- **Prompt injection risks**: User queries passed directly to LLM
|
||||
- **Data leakage potential**: Code content sent to external models
|
||||
- **Response validation**: Limited validation of LLM outputs
|
||||
|
||||
#### Recommendations:
|
||||
1. **Certificate validation**: Enforce TLS certificate checking
|
||||
2. **Response validation**: Sanitize and validate all external responses
|
||||
3. **Connection timeouts**: Implement aggressive timeouts for external calls
|
||||
4. **Host validation**: Whitelist allowed connection targets
|
||||
|
||||
---
|
||||
|
||||
## 5. File System Security Assessment
|
||||
|
||||
### File Access Patterns
|
||||
**Status: GOOD with Recommendations**
|
||||
|
||||
#### Positive Practices:
|
||||
- **Appropriate file permissions**: Uses standard Python file operations
|
||||
- **Pattern-based exclusions**: Sensible default exclude patterns
|
||||
- **Size-based filtering**: Protection against processing oversized files
|
||||
|
||||
#### Areas for Improvement:
|
||||
```python
|
||||
# File enumeration could be restricted further
|
||||
all_files = list(project_path.rglob("*"))
|
||||
```
|
||||
|
||||
#### Recommendations:
|
||||
1. **Implement file access logging**: Track which files are indexed/searched
|
||||
2. **Add symlink protection**: Prevent symlink-based directory traversal
|
||||
3. **Enhanced file type validation**: Magic number checking beyond extensions
|
||||
4. **Temporary file security**: Secure creation and cleanup of temp files
|
||||
|
||||
---
|
||||
|
||||
## 6. Configuration Security Assessment
|
||||
|
||||
### YAML Configuration Handling
|
||||
**Status: MODERATE RISK**
|
||||
|
||||
#### Security Issues:
|
||||
```python
|
||||
# YAML parsing without safe mode enforcement
|
||||
data = yaml.safe_load(f)
|
||||
```
|
||||
**Note**: Uses `safe_load` (good) but lacks validation
|
||||
|
||||
#### Configuration Vulnerabilities:
|
||||
- **Path injection**: User-controlled paths in configuration
|
||||
- **Service endpoints**: External service URLs configurable
|
||||
- **Model specifications**: Potential for malicious model references
|
||||
|
||||
#### Recommendations:
|
||||
1. **Configuration validation schema**: Implement strict YAML schema validation
|
||||
2. **Whitelist allowed values**: Restrict configuration options to safe choices
|
||||
3. **Configuration encryption**: Encrypt sensitive configuration values
|
||||
4. **Read-only configurations**: Prevent runtime modification of security settings
|
||||
|
||||
---
|
||||
|
||||
## 7. Dependencies & Supply Chain Security
|
||||
|
||||
### Dependency Analysis
|
||||
**Status: MODERATE RISK**
|
||||
|
||||
#### Current Dependencies:
|
||||
```
|
||||
lancedb>=0.5.0 # Vector database - moderate risk
|
||||
requests>=2.28.0 # HTTP client - well-maintained
|
||||
click>=8.1.0 # CLI framework - secure
|
||||
PyYAML>=6.0.0 # YAML parsing - recent versions secure
|
||||
```
|
||||
|
||||
#### Security Concerns:
|
||||
- **Version pinning**: Uses minimum versions (>=) allowing potentially vulnerable updates
|
||||
- **Transitive dependencies**: No analysis of indirect dependencies
|
||||
- **Supply chain attacks**: No dependency integrity verification
|
||||
|
||||
#### Recommendations:
|
||||
1. **Pin exact versions**: Use `==` instead of `>=` for production deployments
|
||||
2. **Dependency scanning**: Implement automated vulnerability scanning
|
||||
3. **Integrity verification**: Use pip hash checking for critical dependencies
|
||||
4. **Regular updates**: Establish dependency update and testing procedures
|
||||
|
||||
---
|
||||
|
||||
## 8. Logging & Monitoring Security
|
||||
|
||||
### Current Logging Analysis
|
||||
**Status: REQUIRES IMPROVEMENT**
|
||||
|
||||
#### Logging Practices:
|
||||
```python
|
||||
logger = logging.getLogger(__name__)
|
||||
# Basic logging without security context
|
||||
```
|
||||
|
||||
#### Security Gaps:
|
||||
- **No security event logging**: Access attempts not recorded
|
||||
- **Information leakage**: Debug logs may expose sensitive paths
|
||||
- **No audit trail**: Cannot track security-relevant events
|
||||
- **Log injection**: Potential for log poisoning through user inputs
|
||||
|
||||
#### Recommendations:
|
||||
1. **Security event logging**: Log all authentication attempts, access patterns
|
||||
2. **Sanitize log inputs**: Prevent log injection attacks
|
||||
3. **Structured logging**: Use structured formats for security analysis
|
||||
4. **Log rotation and retention**: Implement secure log management
|
||||
5. **Monitoring integration**: Connect to security monitoring systems
|
||||
|
||||
---
|
||||
|
||||
## 9. System Hardening Recommendations
|
||||
|
||||
### Priority 1 (Critical - Implement Immediately):
|
||||
|
||||
1. **Server Authentication**:
|
||||
```python
|
||||
# Add token-based authentication
|
||||
def authenticate_request(self, token):
|
||||
return hmac.compare_digest(token, self.expected_token)
|
||||
```
|
||||
|
||||
2. **Safe Port Management**:
|
||||
```python
|
||||
# Remove dangerous subprocess calls
|
||||
# Use socket.SO_REUSEADDR properly instead
|
||||
```
|
||||
|
||||
3. **Input Validation Framework**:
|
||||
```python
|
||||
def validate_search_query(query: str) -> str:
|
||||
if len(query) > 512:
|
||||
raise ValueError("Query too long")
|
||||
return re.sub(r'[^\w\s\-\.]', '', query)
|
||||
```
|
||||
|
||||
### Priority 2 (High - Implement Within Sprint):
|
||||
|
||||
4. **Configuration Security**:
|
||||
```python
|
||||
# Implement configuration schema validation
|
||||
# Add encryption for sensitive config values
|
||||
```
|
||||
|
||||
5. **Enhanced Logging**:
|
||||
```python
|
||||
# Add security event logging
|
||||
security_logger.info("Search performed", extra={
|
||||
"user": user_id,
|
||||
"query_hash": hashlib.sha256(query.encode()).hexdigest()[:16],
|
||||
"files_accessed": len(results)
|
||||
})
|
||||
```
|
||||
|
||||
6. **Dependency Management**:
|
||||
```bash
|
||||
# Pin exact versions in requirements.txt
|
||||
# Implement hash checking
|
||||
```
|
||||
|
||||
### Priority 3 (Medium - Next Release Cycle):
|
||||
|
||||
7. **Data Encryption**: Implement at-rest encryption for vector databases
|
||||
8. **Access Controls**: Role-based access to different code segments
|
||||
9. **Security Monitoring**: Integration with SIEM systems
|
||||
10. **Penetration Testing**: Regular security assessments
|
||||
|
||||
---
|
||||
|
||||
## 10. Compliance & Audit Considerations
|
||||
|
||||
### Current Compliance Posture:
|
||||
- **Data Protection**: Local storage reduces GDPR/privacy risks
|
||||
- **Access Logging**: Currently insufficient for audit requirements
|
||||
- **Change Management**: Git-based but lacks security change tracking
|
||||
- **Documentation**: Good code documentation but missing security procedures
|
||||
|
||||
### Recommendations for Compliance:
|
||||
1. **Security documentation**: Create security architecture diagrams
|
||||
2. **Access audit trails**: Implement comprehensive logging
|
||||
3. **Regular security reviews**: Quarterly security assessments
|
||||
4. **Incident response procedures**: Define security incident handling
|
||||
5. **Backup security**: Secure backup and recovery procedures
|
||||
|
||||
---
|
||||
|
||||
## 11. Deployment Security Checklist
|
||||
|
||||
### Pre-Deployment Security Requirements:
|
||||
|
||||
- [ ] **Authentication implemented** for server mode
|
||||
- [ ] **Input validation** comprehensive across all entry points
|
||||
- [ ] **Configuration hardening** with schema validation
|
||||
- [ ] **Dependency scanning** completed and vulnerabilities addressed
|
||||
- [ ] **Security logging** implemented and tested
|
||||
- [ ] **TLS/encryption** for network communications
|
||||
- [ ] **File system permissions** properly configured
|
||||
- [ ] **Service account isolation** implemented
|
||||
- [ ] **Monitoring and alerting** configured
|
||||
- [ ] **Backup security** validated
|
||||
|
||||
### Post-Deployment Security Monitoring:
|
||||
|
||||
- [ ] **Regular vulnerability scans** scheduled
|
||||
- [ ] **Log analysis** for security events
|
||||
- [ ] **Dependency update procedures** established
|
||||
- [ ] **Incident response plan** activated
|
||||
- [ ] **Security metrics** tracked and reported
|
||||
|
||||
---
|
||||
|
||||
## Conclusion
|
||||
|
||||
The FSS-Mini-RAG system demonstrates solid foundational security practices with appropriate local-first architecture and sensible defaults. However, several critical vulnerabilities require immediate attention before professional deployment, particularly around server security and input validation.
|
||||
|
||||
**Primary Action Items:**
|
||||
1. **Implement server authentication** (Critical)
|
||||
2. **Eliminate subprocess security risks** (Critical)
|
||||
3. **Enhanced input validation** (High)
|
||||
4. **Comprehensive security logging** (High)
|
||||
5. **Dependency security hardening** (Medium)
|
||||
|
||||
With these improvements, the system will achieve a **GOOD** security posture suitable for professional deployment environments.
|
||||
|
||||
**Risk Acceptance**: Any deployment without addressing Critical and High priority items should require explicit risk acceptance from senior management.
|
||||
|
||||
---
|
||||
|
||||
*This analysis conducted with military precision and British thoroughness. Implementation of recommendations will significantly enhance the system's defensive capabilities whilst maintaining operational effectiveness.*
|
||||
|
||||
**Emma, Authentication Specialist**
|
||||
**Security Clearance: OFFICIAL**
|
||||
@ -4,106 +4,110 @@ Analyze FSS-Mini-RAG dependencies to determine what's safe to remove.
|
||||
"""
|
||||
|
||||
import ast
|
||||
import os
|
||||
from pathlib import Path
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def find_imports_in_file(file_path):
|
||||
"""Find all imports in a Python file."""
|
||||
try:
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
|
||||
|
||||
tree = ast.parse(content)
|
||||
imports = set()
|
||||
|
||||
|
||||
for node in ast.walk(tree):
|
||||
if isinstance(node, ast.Import):
|
||||
for alias in node.names:
|
||||
imports.add(alias.name.split('.')[0])
|
||||
imports.add(alias.name.split(".")[0])
|
||||
elif isinstance(node, ast.ImportFrom):
|
||||
if node.module:
|
||||
module = node.module.split('.')[0]
|
||||
module = node.module.split(".")[0]
|
||||
imports.add(module)
|
||||
|
||||
|
||||
return imports
|
||||
except Exception as e:
|
||||
print(f"Error analyzing {file_path}: {e}")
|
||||
return set()
|
||||
|
||||
|
||||
def analyze_dependencies():
|
||||
"""Analyze all dependencies in the project."""
|
||||
project_root = Path(__file__).parent
|
||||
mini_rag_dir = project_root / "mini_rag"
|
||||
|
||||
|
||||
# Find all Python files
|
||||
python_files = []
|
||||
for file_path in mini_rag_dir.glob("*.py"):
|
||||
if file_path.name != "__pycache__":
|
||||
python_files.append(file_path)
|
||||
|
||||
|
||||
# Analyze imports
|
||||
file_imports = {}
|
||||
internal_deps = defaultdict(set)
|
||||
|
||||
|
||||
for file_path in python_files:
|
||||
imports = find_imports_in_file(file_path)
|
||||
file_imports[file_path.name] = imports
|
||||
|
||||
|
||||
# Check for internal imports
|
||||
for imp in imports:
|
||||
if imp in [f.stem for f in python_files]:
|
||||
internal_deps[file_path.name].add(imp)
|
||||
|
||||
|
||||
print("🔍 FSS-Mini-RAG Dependency Analysis")
|
||||
print("=" * 50)
|
||||
|
||||
|
||||
# Show what each file imports
|
||||
print("\n📁 File Dependencies:")
|
||||
for filename, imports in file_imports.items():
|
||||
internal = [imp for imp in imports if imp in [f.stem for f in python_files]]
|
||||
if internal:
|
||||
print(f" {filename} imports: {', '.join(internal)}")
|
||||
|
||||
|
||||
# Show reverse dependencies (what depends on each file)
|
||||
reverse_deps = defaultdict(set)
|
||||
for file, deps in internal_deps.items():
|
||||
for dep in deps:
|
||||
reverse_deps[dep].add(file)
|
||||
|
||||
|
||||
print("\n🔗 Reverse Dependencies (what uses each file):")
|
||||
all_modules = {f.stem for f in python_files}
|
||||
|
||||
|
||||
for module in sorted(all_modules):
|
||||
users = reverse_deps.get(module, set())
|
||||
if users:
|
||||
print(f" {module}.py is used by: {', '.join(users)}")
|
||||
else:
|
||||
print(f" {module}.py is NOT imported by any other file")
|
||||
|
||||
|
||||
# Safety analysis
|
||||
print("\n🛡️ Safety Analysis:")
|
||||
|
||||
|
||||
# Files imported by __init__.py are definitely needed
|
||||
init_imports = file_imports.get('__init__.py', set())
|
||||
init_imports = file_imports.get("__init__.py", set())
|
||||
print(f" Core modules (imported by __init__.py): {', '.join(init_imports)}")
|
||||
|
||||
|
||||
# Files not used anywhere might be safe to remove
|
||||
unused_files = []
|
||||
for module in all_modules:
|
||||
if module not in reverse_deps and module != '__init__':
|
||||
if module not in reverse_deps and module != "__init__":
|
||||
unused_files.append(module)
|
||||
|
||||
|
||||
if unused_files:
|
||||
print(f" ⚠️ Potentially unused: {', '.join(unused_files)}")
|
||||
print(" ❗ Verify these aren't used by CLI or external scripts!")
|
||||
|
||||
|
||||
# Check CLI usage
|
||||
cli_files = ['cli.py', 'enhanced_cli.py']
|
||||
cli_files = ["cli.py", "enhanced_cli.py"]
|
||||
for cli_file in cli_files:
|
||||
if cli_file in file_imports:
|
||||
cli_imports = file_imports[cli_file]
|
||||
print(f" 📋 {cli_file} imports: {', '.join([imp for imp in cli_imports if imp in all_modules])}")
|
||||
print(
|
||||
f" 📋 {cli_file} imports: {', '.join([imp for imp in cli_imports if imp in all_modules])}"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
analyze_dependencies()
|
||||
analyze_dependencies()
|
||||
|
||||
@ -5,64 +5,67 @@ Shows how to index a project and search it programmatically.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
from mini_rag import ProjectIndexer, CodeSearcher, CodeEmbedder
|
||||
|
||||
from mini_rag import CodeEmbedder, CodeSearcher, ProjectIndexer
|
||||
|
||||
|
||||
def main():
|
||||
# Example project path - change this to your project
|
||||
project_path = Path(".") # Current directory
|
||||
|
||||
|
||||
print("=== FSS-Mini-RAG Basic Usage Example ===")
|
||||
print(f"Project: {project_path}")
|
||||
|
||||
|
||||
# Initialize the embedding system
|
||||
print("\n1. Initializing embedding system...")
|
||||
embedder = CodeEmbedder()
|
||||
print(f" Using: {embedder.get_embedding_info()['method']}")
|
||||
|
||||
# Initialize indexer and searcher
|
||||
|
||||
# Initialize indexer and searcher
|
||||
indexer = ProjectIndexer(project_path, embedder)
|
||||
searcher = CodeSearcher(project_path, embedder)
|
||||
|
||||
|
||||
# Index the project
|
||||
print("\n2. Indexing project...")
|
||||
result = indexer.index_project()
|
||||
|
||||
|
||||
print(f" Files processed: {result.get('files_processed', 0)}")
|
||||
print(f" Chunks created: {result.get('chunks_created', 0)}")
|
||||
print(f" Time taken: {result.get('indexing_time', 0):.2f}s")
|
||||
|
||||
|
||||
# Get index statistics
|
||||
print("\n3. Index statistics:")
|
||||
stats = indexer.get_stats()
|
||||
print(f" Total files: {stats.get('total_files', 0)}")
|
||||
print(f" Total chunks: {stats.get('total_chunks', 0)}")
|
||||
print(f" Languages: {', '.join(stats.get('languages', []))}")
|
||||
|
||||
|
||||
# Example searches
|
||||
queries = [
|
||||
"chunker function",
|
||||
"embedding system",
|
||||
"embedding system",
|
||||
"search implementation",
|
||||
"file watcher",
|
||||
"error handling"
|
||||
"error handling",
|
||||
]
|
||||
|
||||
|
||||
print("\n4. Example searches:")
|
||||
for query in queries:
|
||||
print(f"\n Query: '{query}'")
|
||||
results = searcher.search(query, top_k=3)
|
||||
|
||||
|
||||
if results:
|
||||
for i, result in enumerate(results, 1):
|
||||
print(f" {i}. {result.file_path.name} (score: {result.score:.3f})")
|
||||
print(f" Type: {result.chunk_type}")
|
||||
# Show first 60 characters of content
|
||||
content_preview = result.content.replace('\n', ' ')[:60]
|
||||
content_preview = result.content.replace("\n", " ")[:60]
|
||||
print(f" Preview: {content_preview}...")
|
||||
else:
|
||||
print(" No results found")
|
||||
|
||||
|
||||
print("\n=== Example Complete ===")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
||||
@ -5,102 +5,108 @@ Analyzes the indexed data to suggest optimal settings.
|
||||
"""
|
||||
|
||||
import json
|
||||
from pathlib import Path
|
||||
from collections import defaultdict, Counter
|
||||
import sys
|
||||
from collections import Counter
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def analyze_project_patterns(manifest_path: Path):
|
||||
"""Analyze project patterns and suggest optimizations."""
|
||||
|
||||
|
||||
with open(manifest_path) as f:
|
||||
manifest = json.load(f)
|
||||
|
||||
files = manifest.get('files', {})
|
||||
|
||||
|
||||
files = manifest.get("files", {})
|
||||
|
||||
print("🔍 FSS-Mini-RAG Smart Tuning Analysis")
|
||||
print("=" * 50)
|
||||
|
||||
|
||||
# Analyze file types and chunking efficiency
|
||||
languages = Counter()
|
||||
chunk_efficiency = []
|
||||
large_files = []
|
||||
small_files = []
|
||||
|
||||
|
||||
for filepath, info in files.items():
|
||||
lang = info.get('language', 'unknown')
|
||||
lang = info.get("language", "unknown")
|
||||
languages[lang] += 1
|
||||
|
||||
size = info.get('size', 0)
|
||||
chunks = info.get('chunks', 1)
|
||||
|
||||
|
||||
size = info.get("size", 0)
|
||||
chunks = info.get("chunks", 1)
|
||||
|
||||
chunk_efficiency.append(chunks / max(1, size / 1000)) # chunks per KB
|
||||
|
||||
|
||||
if size > 10000: # >10KB
|
||||
large_files.append((filepath, size, chunks))
|
||||
elif size < 500: # <500B
|
||||
small_files.append((filepath, size, chunks))
|
||||
|
||||
|
||||
# Analysis results
|
||||
total_files = len(files)
|
||||
total_chunks = sum(info.get('chunks', 1) for info in files.values())
|
||||
total_chunks = sum(info.get("chunks", 1) for info in files.values())
|
||||
avg_chunks_per_file = total_chunks / max(1, total_files)
|
||||
|
||||
print(f"📊 Current Stats:")
|
||||
|
||||
print("📊 Current Stats:")
|
||||
print(f" Files: {total_files}")
|
||||
print(f" Chunks: {total_chunks}")
|
||||
print(f" Avg chunks/file: {avg_chunks_per_file:.1f}")
|
||||
|
||||
print(f"\n🗂️ Language Distribution:")
|
||||
|
||||
print("\n🗂️ Language Distribution:")
|
||||
for lang, count in languages.most_common(10):
|
||||
pct = 100 * count / total_files
|
||||
print(f" {lang}: {count} files ({pct:.1f}%)")
|
||||
|
||||
print(f"\n💡 Smart Optimization Suggestions:")
|
||||
|
||||
|
||||
print("\n💡 Smart Optimization Suggestions:")
|
||||
|
||||
# Suggestion 1: Language-specific chunking
|
||||
if languages['python'] > 10:
|
||||
print(f"✨ Python Optimization:")
|
||||
print(f" - Use function-level chunking (detected {languages['python']} Python files)")
|
||||
print(f" - Increase chunk size to 3000 chars for Python (better context)")
|
||||
|
||||
if languages['markdown'] > 5:
|
||||
print(f"✨ Markdown Optimization:")
|
||||
if languages["python"] > 10:
|
||||
print("✨ Python Optimization:")
|
||||
print(
|
||||
f" - Use function-level chunking (detected {languages['python']} Python files)"
|
||||
)
|
||||
print(" - Increase chunk size to 3000 chars for Python (better context)")
|
||||
|
||||
if languages["markdown"] > 5:
|
||||
print("✨ Markdown Optimization:")
|
||||
print(f" - Use header-based chunking (detected {languages['markdown']} MD files)")
|
||||
print(f" - Keep sections together for better search relevance")
|
||||
|
||||
if languages['json'] > 20:
|
||||
print(f"✨ JSON Optimization:")
|
||||
print(" - Keep sections together for better search relevance")
|
||||
|
||||
if languages["json"] > 20:
|
||||
print("✨ JSON Optimization:")
|
||||
print(f" - Consider object-level chunking (detected {languages['json']} JSON files)")
|
||||
print(f" - Might want to exclude large config JSONs")
|
||||
|
||||
print(" - Might want to exclude large config JSONs")
|
||||
|
||||
# Suggestion 2: File size optimization
|
||||
if large_files:
|
||||
print(f"\n📈 Large File Optimization:")
|
||||
print("\n📈 Large File Optimization:")
|
||||
print(f" Found {len(large_files)} files >10KB:")
|
||||
for filepath, size, chunks in sorted(large_files, key=lambda x: x[1], reverse=True)[:3]:
|
||||
for filepath, size, chunks in sorted(large_files, key=lambda x: x[1], reverse=True)[
|
||||
:3
|
||||
]:
|
||||
kb = size / 1024
|
||||
print(f" - {filepath}: {kb:.1f}KB → {chunks} chunks")
|
||||
if len(large_files) > 5:
|
||||
print(f" 💡 Consider streaming threshold: 5KB (current: 1MB)")
|
||||
|
||||
print(" 💡 Consider streaming threshold: 5KB (current: 1MB)")
|
||||
|
||||
if small_files and len(small_files) > total_files * 0.3:
|
||||
print(f"\n📉 Small File Optimization:")
|
||||
print("\n📉 Small File Optimization:")
|
||||
print(f" {len(small_files)} files <500B might not need chunking")
|
||||
print(f" 💡 Consider: combine small files or skip tiny ones")
|
||||
|
||||
print(" 💡 Consider: combine small files or skip tiny ones")
|
||||
|
||||
# Suggestion 3: Search optimization
|
||||
avg_efficiency = sum(chunk_efficiency) / len(chunk_efficiency)
|
||||
print(f"\n🔍 Search Optimization:")
|
||||
print("\n🔍 Search Optimization:")
|
||||
if avg_efficiency < 0.5:
|
||||
print(f" 💡 Chunks are large relative to files - consider smaller chunks")
|
||||
print(" 💡 Chunks are large relative to files - consider smaller chunks")
|
||||
print(f" 💡 Current: {avg_chunks_per_file:.1f} chunks/file, try 2-3 chunks/file")
|
||||
elif avg_efficiency > 2:
|
||||
print(f" 💡 Many small chunks - consider larger chunk size")
|
||||
print(f" 💡 Reduce chunk overhead with 2000-4000 char chunks")
|
||||
|
||||
print(" 💡 Many small chunks - consider larger chunk size")
|
||||
print(" 💡 Reduce chunk overhead with 2000-4000 char chunks")
|
||||
|
||||
# Suggestion 4: Smart defaults
|
||||
print(f"\n⚙️ Recommended Config Updates:")
|
||||
print(f"""{{
|
||||
print("\n⚙️ Recommended Config Updates:")
|
||||
print(
|
||||
"""{{
|
||||
"chunking": {{
|
||||
"max_size": {3000 if languages['python'] > languages['markdown'] else 2000},
|
||||
"min_size": 200,
|
||||
@ -115,16 +121,18 @@ def analyze_project_patterns(manifest_path: Path):
|
||||
"skip_small_files": {500 if len(small_files) > total_files * 0.3 else 0},
|
||||
"streaming_threshold_kb": {5 if len(large_files) > 5 else 1024}
|
||||
}}
|
||||
}}""")
|
||||
}}"""
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if len(sys.argv) != 2:
|
||||
print("Usage: python smart_config_suggestions.py <path_to_manifest.json>")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
manifest_path = Path(sys.argv[1])
|
||||
if not manifest_path.exists():
|
||||
print(f"Manifest not found: {manifest_path}")
|
||||
sys.exit(1)
|
||||
|
||||
analyze_project_patterns(manifest_path)
|
||||
|
||||
analyze_project_patterns(manifest_path)
|
||||
|
||||
@ -7,30 +7,16 @@ Designed for portability, efficiency, and simplicity across projects and compute
|
||||
|
||||
__version__ = "2.1.0"
|
||||
|
||||
from .ollama_embeddings import OllamaEmbedder as CodeEmbedder
|
||||
from .chunker import CodeChunker
|
||||
from .indexer import ProjectIndexer
|
||||
from .ollama_embeddings import OllamaEmbedder as CodeEmbedder
|
||||
from .search import CodeSearcher
|
||||
from .watcher import FileWatcher
|
||||
|
||||
# Auto-update system (graceful import for legacy versions)
|
||||
try:
|
||||
from .updater import UpdateChecker, check_for_updates, get_updater
|
||||
__all__ = [
|
||||
"CodeEmbedder",
|
||||
"CodeChunker",
|
||||
"ProjectIndexer",
|
||||
"CodeSearcher",
|
||||
"FileWatcher",
|
||||
"UpdateChecker",
|
||||
"check_for_updates",
|
||||
"get_updater",
|
||||
]
|
||||
except ImportError:
|
||||
__all__ = [
|
||||
"CodeEmbedder",
|
||||
"CodeChunker",
|
||||
"ProjectIndexer",
|
||||
"CodeSearcher",
|
||||
"FileWatcher",
|
||||
]
|
||||
__all__ = [
|
||||
"CodeEmbedder",
|
||||
"CodeChunker",
|
||||
"ProjectIndexer",
|
||||
"CodeSearcher",
|
||||
"FileWatcher",
|
||||
]
|
||||
|
||||
@ -2,5 +2,5 @@
|
||||
|
||||
from .cli import cli
|
||||
|
||||
if __name__ == '__main__':
|
||||
cli()
|
||||
if __name__ == "__main__":
|
||||
cli()
|
||||
|
||||
@ -3,194 +3,188 @@ Auto-optimizer for FSS-Mini-RAG.
|
||||
Automatically tunes settings based on usage patterns.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
import json
|
||||
from typing import Dict, Any, List
|
||||
from collections import Counter
|
||||
import logging
|
||||
from collections import Counter
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AutoOptimizer:
|
||||
"""Automatically optimizes RAG settings based on project patterns."""
|
||||
|
||||
|
||||
def __init__(self, project_path: Path):
|
||||
self.project_path = project_path
|
||||
self.rag_dir = project_path / '.mini-rag'
|
||||
self.config_path = self.rag_dir / 'config.json'
|
||||
self.manifest_path = self.rag_dir / 'manifest.json'
|
||||
|
||||
self.rag_dir = project_path / ".mini-rag"
|
||||
self.config_path = self.rag_dir / "config.json"
|
||||
self.manifest_path = self.rag_dir / "manifest.json"
|
||||
|
||||
def analyze_and_optimize(self) -> Dict[str, Any]:
|
||||
"""Analyze current patterns and auto-optimize settings."""
|
||||
|
||||
|
||||
if not self.manifest_path.exists():
|
||||
return {"error": "No index found - run indexing first"}
|
||||
|
||||
|
||||
# Load current data
|
||||
with open(self.manifest_path) as f:
|
||||
manifest = json.load(f)
|
||||
|
||||
|
||||
# Analyze patterns
|
||||
analysis = self._analyze_patterns(manifest)
|
||||
|
||||
|
||||
# Generate optimizations
|
||||
optimizations = self._generate_optimizations(analysis)
|
||||
|
||||
|
||||
# Apply optimizations if beneficial
|
||||
if optimizations['confidence'] > 0.7:
|
||||
if optimizations["confidence"] > 0.7:
|
||||
self._apply_optimizations(optimizations)
|
||||
return {
|
||||
"status": "optimized",
|
||||
"changes": optimizations['changes'],
|
||||
"expected_improvement": optimizations['expected_improvement']
|
||||
"changes": optimizations["changes"],
|
||||
"expected_improvement": optimizations["expected_improvement"],
|
||||
}
|
||||
else:
|
||||
return {
|
||||
"status": "no_changes_needed",
|
||||
"analysis": analysis,
|
||||
"confidence": optimizations['confidence']
|
||||
"confidence": optimizations["confidence"],
|
||||
}
|
||||
|
||||
|
||||
def _analyze_patterns(self, manifest: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Analyze current indexing patterns."""
|
||||
files = manifest.get('files', {})
|
||||
|
||||
files = manifest.get("files", {})
|
||||
|
||||
# Language distribution
|
||||
languages = Counter()
|
||||
sizes = []
|
||||
chunk_ratios = []
|
||||
|
||||
|
||||
for filepath, info in files.items():
|
||||
lang = info.get('language', 'unknown')
|
||||
lang = info.get("language", "unknown")
|
||||
languages[lang] += 1
|
||||
|
||||
size = info.get('size', 0)
|
||||
chunks = info.get('chunks', 1)
|
||||
|
||||
|
||||
size = info.get("size", 0)
|
||||
chunks = info.get("chunks", 1)
|
||||
|
||||
sizes.append(size)
|
||||
chunk_ratios.append(chunks / max(1, size / 1000)) # chunks per KB
|
||||
|
||||
|
||||
avg_chunk_ratio = sum(chunk_ratios) / len(chunk_ratios) if chunk_ratios else 1
|
||||
avg_size = sum(sizes) / len(sizes) if sizes else 1000
|
||||
|
||||
|
||||
return {
|
||||
'languages': dict(languages.most_common()),
|
||||
'total_files': len(files),
|
||||
'total_chunks': sum(info.get('chunks', 1) for info in files.values()),
|
||||
'avg_chunk_ratio': avg_chunk_ratio,
|
||||
'avg_file_size': avg_size,
|
||||
'large_files': sum(1 for s in sizes if s > 10000),
|
||||
'small_files': sum(1 for s in sizes if s < 500)
|
||||
"languages": dict(languages.most_common()),
|
||||
"total_files": len(files),
|
||||
"total_chunks": sum(info.get("chunks", 1) for info in files.values()),
|
||||
"avg_chunk_ratio": avg_chunk_ratio,
|
||||
"avg_file_size": avg_size,
|
||||
"large_files": sum(1 for s in sizes if s > 10000),
|
||||
"small_files": sum(1 for s in sizes if s < 500),
|
||||
}
|
||||
|
||||
|
||||
def _generate_optimizations(self, analysis: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Generate optimization recommendations."""
|
||||
changes = []
|
||||
confidence = 0.5
|
||||
expected_improvement = 0
|
||||
|
||||
|
||||
# Optimize chunking based on dominant language
|
||||
languages = analysis['languages']
|
||||
languages = analysis["languages"]
|
||||
if languages:
|
||||
dominant_lang, count = list(languages.items())[0]
|
||||
lang_pct = count / analysis['total_files']
|
||||
|
||||
lang_pct = count / analysis["total_files"]
|
||||
|
||||
if lang_pct > 0.3: # Dominant language >30%
|
||||
if dominant_lang == 'python' and analysis['avg_chunk_ratio'] < 1.5:
|
||||
changes.append("Increase Python chunk size to 3000 for better function context")
|
||||
if dominant_lang == "python" and analysis["avg_chunk_ratio"] < 1.5:
|
||||
changes.append(
|
||||
"Increase Python chunk size to 3000 for better function context"
|
||||
)
|
||||
confidence += 0.2
|
||||
expected_improvement += 15
|
||||
|
||||
elif dominant_lang == 'markdown' and analysis['avg_chunk_ratio'] < 1.2:
|
||||
|
||||
elif dominant_lang == "markdown" and analysis["avg_chunk_ratio"] < 1.2:
|
||||
changes.append("Use header-based chunking for Markdown files")
|
||||
confidence += 0.15
|
||||
expected_improvement += 10
|
||||
|
||||
|
||||
# Optimize for large files
|
||||
if analysis['large_files'] > 5:
|
||||
if analysis["large_files"] > 5:
|
||||
changes.append("Reduce streaming threshold to 5KB for better large file handling")
|
||||
confidence += 0.1
|
||||
expected_improvement += 8
|
||||
|
||||
|
||||
# Optimize chunk ratio
|
||||
if analysis['avg_chunk_ratio'] < 1.0:
|
||||
if analysis["avg_chunk_ratio"] < 1.0:
|
||||
changes.append("Reduce chunk size for more granular search results")
|
||||
confidence += 0.15
|
||||
expected_improvement += 12
|
||||
elif analysis['avg_chunk_ratio'] > 3.0:
|
||||
elif analysis["avg_chunk_ratio"] > 3.0:
|
||||
changes.append("Increase chunk size to reduce overhead")
|
||||
confidence += 0.1
|
||||
expected_improvement += 5
|
||||
|
||||
|
||||
# Skip tiny files optimization
|
||||
small_file_pct = analysis['small_files'] / analysis['total_files']
|
||||
small_file_pct = analysis["small_files"] / analysis["total_files"]
|
||||
if small_file_pct > 0.3:
|
||||
changes.append("Skip files smaller than 300 bytes to improve focus")
|
||||
confidence += 0.1
|
||||
expected_improvement += 3
|
||||
|
||||
|
||||
return {
|
||||
'changes': changes,
|
||||
'confidence': min(confidence, 1.0),
|
||||
'expected_improvement': expected_improvement
|
||||
"changes": changes,
|
||||
"confidence": min(confidence, 1.0),
|
||||
"expected_improvement": expected_improvement,
|
||||
}
|
||||
|
||||
|
||||
def _apply_optimizations(self, optimizations: Dict[str, Any]):
|
||||
"""Apply the recommended optimizations."""
|
||||
|
||||
|
||||
# Load existing config or create default
|
||||
if self.config_path.exists():
|
||||
with open(self.config_path) as f:
|
||||
config = json.load(f)
|
||||
else:
|
||||
config = self._get_default_config()
|
||||
|
||||
changes = optimizations['changes']
|
||||
|
||||
|
||||
changes = optimizations["changes"]
|
||||
|
||||
# Apply changes based on recommendations
|
||||
for change in changes:
|
||||
if "Python chunk size to 3000" in change:
|
||||
config.setdefault('chunking', {})['max_size'] = 3000
|
||||
|
||||
config.setdefault("chunking", {})["max_size"] = 3000
|
||||
|
||||
elif "header-based chunking" in change:
|
||||
config.setdefault('chunking', {})['strategy'] = 'header'
|
||||
|
||||
config.setdefault("chunking", {})["strategy"] = "header"
|
||||
|
||||
elif "streaming threshold to 5KB" in change:
|
||||
config.setdefault('streaming', {})['threshold_bytes'] = 5120
|
||||
|
||||
config.setdefault("streaming", {})["threshold_bytes"] = 5120
|
||||
|
||||
elif "Reduce chunk size" in change:
|
||||
current_size = config.get('chunking', {}).get('max_size', 2000)
|
||||
config.setdefault('chunking', {})['max_size'] = max(1500, current_size - 500)
|
||||
|
||||
current_size = config.get("chunking", {}).get("max_size", 2000)
|
||||
config.setdefault("chunking", {})["max_size"] = max(1500, current_size - 500)
|
||||
|
||||
elif "Increase chunk size" in change:
|
||||
current_size = config.get('chunking', {}).get('max_size', 2000)
|
||||
config.setdefault('chunking', {})['max_size'] = min(4000, current_size + 500)
|
||||
|
||||
current_size = config.get("chunking", {}).get("max_size", 2000)
|
||||
config.setdefault("chunking", {})["max_size"] = min(4000, current_size + 500)
|
||||
|
||||
elif "Skip files smaller" in change:
|
||||
config.setdefault('files', {})['min_file_size'] = 300
|
||||
|
||||
config.setdefault("files", {})["min_file_size"] = 300
|
||||
|
||||
# Save optimized config
|
||||
config['_auto_optimized'] = True
|
||||
config['_optimization_timestamp'] = json.dumps(None, default=str)
|
||||
|
||||
with open(self.config_path, 'w') as f:
|
||||
config["_auto_optimized"] = True
|
||||
config["_optimization_timestamp"] = json.dumps(None, default=str)
|
||||
|
||||
with open(self.config_path, "w") as f:
|
||||
json.dump(config, f, indent=2)
|
||||
|
||||
|
||||
logger.info(f"Applied {len(changes)} optimizations to {self.config_path}")
|
||||
|
||||
|
||||
def _get_default_config(self) -> Dict[str, Any]:
|
||||
"""Get default configuration."""
|
||||
return {
|
||||
"chunking": {
|
||||
"max_size": 2000,
|
||||
"min_size": 150,
|
||||
"strategy": "semantic"
|
||||
},
|
||||
"streaming": {
|
||||
"enabled": True,
|
||||
"threshold_bytes": 1048576
|
||||
},
|
||||
"files": {
|
||||
"min_file_size": 50
|
||||
}
|
||||
}
|
||||
"chunking": {"max_size": 2000, "min_size": 150, "strategy": "semantic"},
|
||||
"streaming": {"enabled": True, "threshold_bytes": 1048576},
|
||||
"files": {"min_file_size": 50},
|
||||
}
|
||||
|
||||
1087
mini_rag/chunker.py
1087
mini_rag/chunker.py
File diff suppressed because it is too large
Load Diff
510
mini_rag/cli.py
510
mini_rag/cli.py
@ -3,59 +3,57 @@ Command-line interface for Mini RAG system.
|
||||
Beautiful, intuitive, and highly effective.
|
||||
"""
|
||||
|
||||
import click
|
||||
import logging
|
||||
import sys
|
||||
import time
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
# Fix Windows console for proper emoji/Unicode support
|
||||
from .windows_console_fix import fix_windows_console
|
||||
fix_windows_console()
|
||||
|
||||
import click
|
||||
from rich.console import Console
|
||||
from rich.table import Table
|
||||
from rich.progress import Progress, SpinnerColumn, TextColumn
|
||||
from rich.logging import RichHandler
|
||||
from rich.syntax import Syntax
|
||||
from rich.panel import Panel
|
||||
from rich import print as rprint
|
||||
from rich.progress import Progress, SpinnerColumn, TextColumn
|
||||
from rich.syntax import Syntax
|
||||
from rich.table import Table
|
||||
|
||||
from .indexer import ProjectIndexer
|
||||
from .search import CodeSearcher
|
||||
from .watcher import FileWatcher
|
||||
from .non_invasive_watcher import NonInvasiveFileWatcher
|
||||
from .ollama_embeddings import OllamaEmbedder as CodeEmbedder
|
||||
from .chunker import CodeChunker
|
||||
from .performance import get_monitor
|
||||
from .server import RAGClient
|
||||
from .server import RAGServer, RAGClient, start_server
|
||||
from .search import CodeSearcher
|
||||
from .server import RAGClient, start_server
|
||||
from .windows_console_fix import fix_windows_console
|
||||
|
||||
# Fix Windows console for proper emoji/Unicode support
|
||||
fix_windows_console()
|
||||
|
||||
# Set up logging
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format="%(message)s",
|
||||
handlers=[RichHandler(rich_tracebacks=True)]
|
||||
handlers=[RichHandler(rich_tracebacks=True)],
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
console = Console()
|
||||
|
||||
|
||||
@click.group()
|
||||
@click.option('--verbose', '-v', is_flag=True, help='Enable verbose logging')
|
||||
@click.option('--quiet', '-q', is_flag=True, help='Suppress output')
|
||||
@click.option("--verbose", "-v", is_flag=True, help="Enable verbose logging")
|
||||
@click.option("--quiet", "-q", is_flag=True, help="Suppress output")
|
||||
def cli(verbose: bool, quiet: bool):
|
||||
"""
|
||||
Mini RAG - Fast semantic code search that actually works.
|
||||
|
||||
A local RAG system for improving the development environment's grounding capabilities.
|
||||
|
||||
A local RAG system for improving the development environment's grounding
|
||||
capabilities.
|
||||
Indexes your codebase and enables lightning-fast semantic search.
|
||||
"""
|
||||
# Check virtual environment
|
||||
from .venv_checker import check_and_warn_venv
|
||||
|
||||
check_and_warn_venv("rag-mini", force_exit=False)
|
||||
|
||||
|
||||
if verbose:
|
||||
logging.getLogger().setLevel(logging.DEBUG)
|
||||
elif quiet:
|
||||
@ -63,43 +61,45 @@ def cli(verbose: bool, quiet: bool):
|
||||
|
||||
|
||||
@cli.command()
|
||||
@click.option('--path', '-p', type=click.Path(exists=True), default='.',
|
||||
help='Project path to index')
|
||||
@click.option('--force', '-f', is_flag=True,
|
||||
help='Force reindex all files')
|
||||
@click.option('--reindex', '-r', is_flag=True,
|
||||
help='Force complete reindex (same as --force)')
|
||||
@click.option('--model', '-m', type=str, default=None,
|
||||
help='Embedding model to use')
|
||||
@click.option(
|
||||
"--path",
|
||||
"-p",
|
||||
type=click.Path(exists=True),
|
||||
default=".",
|
||||
help="Project path to index",
|
||||
)
|
||||
@click.option("--force", "-", is_flag=True, help="Force reindex all files")
|
||||
@click.option("--reindex", "-r", is_flag=True, help="Force complete reindex (same as --force)")
|
||||
@click.option("--model", "-m", type=str, default=None, help="Embedding model to use")
|
||||
def init(path: str, force: bool, reindex: bool, model: Optional[str]):
|
||||
"""Initialize RAG index for a project."""
|
||||
project_path = Path(path).resolve()
|
||||
|
||||
|
||||
console.print(f"\n[bold cyan]Initializing Mini RAG for:[/bold cyan] {project_path}\n")
|
||||
|
||||
|
||||
# Check if already initialized
|
||||
rag_dir = project_path / '.mini-rag'
|
||||
rag_dir = project_path / ".mini-rag"
|
||||
force_reindex = force or reindex
|
||||
if rag_dir.exists() and not force_reindex:
|
||||
console.print("[yellow][/yellow] Project already initialized!")
|
||||
console.print("Use --force or --reindex to reindex all files\n")
|
||||
|
||||
|
||||
# Show current stats
|
||||
indexer = ProjectIndexer(project_path)
|
||||
stats = indexer.get_statistics()
|
||||
|
||||
|
||||
table = Table(title="Current Index Statistics")
|
||||
table.add_column("Metric", style="cyan")
|
||||
table.add_column("Value", style="green")
|
||||
|
||||
table.add_row("Files Indexed", str(stats['file_count']))
|
||||
table.add_row("Total Chunks", str(stats['chunk_count']))
|
||||
|
||||
table.add_row("Files Indexed", str(stats["file_count"]))
|
||||
table.add_row("Total Chunks", str(stats["chunk_count"]))
|
||||
table.add_row("Index Size", f"{stats['index_size_mb']:.2f} MB")
|
||||
table.add_row("Last Updated", stats['indexed_at'] or "Never")
|
||||
|
||||
table.add_row("Last Updated", stats["indexed_at"] or "Never")
|
||||
|
||||
console.print(table)
|
||||
return
|
||||
|
||||
|
||||
# Initialize components
|
||||
try:
|
||||
with Progress(
|
||||
@ -111,34 +111,33 @@ def init(path: str, force: bool, reindex: bool, model: Optional[str]):
|
||||
task = progress.add_task("[cyan]Loading embedding model...", total=None)
|
||||
embedder = CodeEmbedder(model_name=model)
|
||||
progress.update(task, completed=True)
|
||||
|
||||
|
||||
# Create indexer
|
||||
task = progress.add_task("[cyan]Creating indexer...", total=None)
|
||||
indexer = ProjectIndexer(
|
||||
project_path,
|
||||
embedder=embedder
|
||||
)
|
||||
indexer = ProjectIndexer(project_path, embedder=embedder)
|
||||
progress.update(task, completed=True)
|
||||
|
||||
|
||||
# Run indexing
|
||||
console.print("\n[bold green]Starting indexing...[/bold green]\n")
|
||||
stats = indexer.index_project(force_reindex=force_reindex)
|
||||
|
||||
|
||||
# Show summary
|
||||
if stats['files_indexed'] > 0:
|
||||
console.print(f"\n[bold green] Success![/bold green] Indexed {stats['files_indexed']} files")
|
||||
if stats["files_indexed"] > 0:
|
||||
console.print(
|
||||
f"\n[bold green] Success![/bold green] Indexed {stats['files_indexed']} files"
|
||||
)
|
||||
console.print(f"Created {stats['chunks_created']} searchable chunks")
|
||||
console.print(f"Time: {stats['time_taken']:.2f} seconds")
|
||||
console.print(f"Speed: {stats['files_per_second']:.1f} files/second")
|
||||
else:
|
||||
console.print("\n[green] All files are already up to date![/green]")
|
||||
|
||||
|
||||
# Show how to use
|
||||
console.print("\n[bold]Next steps:[/bold]")
|
||||
console.print(" • Search your code: [cyan]rag-mini search \"your query\"[/cyan]")
|
||||
console.print(' • Search your code: [cyan]rag-mini search "your query"[/cyan]')
|
||||
console.print(" • Watch for changes: [cyan]rag-mini watch[/cyan]")
|
||||
console.print(" • View statistics: [cyan]rag-mini stats[/cyan]\n")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
console.print(f"\n[bold red]Error:[/bold red] {e}")
|
||||
logger.exception("Initialization failed")
|
||||
@ -146,64 +145,71 @@ def init(path: str, force: bool, reindex: bool, model: Optional[str]):
|
||||
|
||||
|
||||
@cli.command()
|
||||
@click.argument('query')
|
||||
@click.option('--path', '-p', type=click.Path(exists=True), default='.',
|
||||
help='Project path')
|
||||
@click.option('--top-k', '-k', type=int, default=10,
|
||||
help='Maximum results to show')
|
||||
@click.option('--type', '-t', multiple=True,
|
||||
help='Filter by chunk type (function, class, method)')
|
||||
@click.option('--lang', multiple=True,
|
||||
help='Filter by language (python, javascript, etc.)')
|
||||
@click.option('--show-content', '-c', is_flag=True,
|
||||
help='Show code content in results')
|
||||
@click.option('--show-perf', is_flag=True,
|
||||
help='Show performance metrics')
|
||||
def search(query: str, path: str, top_k: int, type: tuple, lang: tuple, show_content: bool, show_perf: bool):
|
||||
@click.argument("query")
|
||||
@click.option("--path", "-p", type=click.Path(exists=True), default=".", help="Project path")
|
||||
@click.option("--top-k", "-k", type=int, default=10, help="Maximum results to show")
|
||||
@click.option(
|
||||
"--type", "-t", multiple=True, help="Filter by chunk type (function, class, method)"
|
||||
)
|
||||
@click.option("--lang", multiple=True, help="Filter by language (python, javascript, etc.)")
|
||||
@click.option("--show-content", "-c", is_flag=True, help="Show code content in results")
|
||||
@click.option("--show-per", is_flag=True, help="Show performance metrics")
|
||||
def search(
|
||||
query: str,
|
||||
path: str,
|
||||
top_k: int,
|
||||
type: tuple,
|
||||
lang: tuple,
|
||||
show_content: bool,
|
||||
show_perf: bool,
|
||||
):
|
||||
"""Search codebase using semantic similarity."""
|
||||
project_path = Path(path).resolve()
|
||||
|
||||
|
||||
# Check if indexed
|
||||
rag_dir = project_path / '.mini-rag'
|
||||
rag_dir = project_path / ".mini-rag"
|
||||
if not rag_dir.exists():
|
||||
console.print("[red]Error:[/red] Project not indexed. Run 'rag-mini init' first.")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
# Get performance monitor
|
||||
monitor = get_monitor() if show_perf else None
|
||||
|
||||
|
||||
# Check if server is running
|
||||
client = RAGClient()
|
||||
use_server = client.is_running()
|
||||
|
||||
|
||||
try:
|
||||
if use_server:
|
||||
# Use server for fast queries
|
||||
console.print("[dim]Using RAG server...[/dim]")
|
||||
|
||||
|
||||
response = client.search(query, top_k=top_k)
|
||||
|
||||
if response.get('success'):
|
||||
|
||||
if response.get("success"):
|
||||
# Convert response to SearchResult objects
|
||||
from .search import SearchResult
|
||||
|
||||
results = []
|
||||
for r in response['results']:
|
||||
for r in response["results"]:
|
||||
result = SearchResult(
|
||||
file_path=r['file_path'],
|
||||
content=r['content'],
|
||||
score=r['score'],
|
||||
start_line=r['start_line'],
|
||||
end_line=r['end_line'],
|
||||
chunk_type=r['chunk_type'],
|
||||
name=r['name'],
|
||||
language=r['language']
|
||||
file_path=r["file_path"],
|
||||
content=r["content"],
|
||||
score=r["score"],
|
||||
start_line=r["start_line"],
|
||||
end_line=r["end_line"],
|
||||
chunk_type=r["chunk_type"],
|
||||
name=r["name"],
|
||||
language=r["language"],
|
||||
)
|
||||
results.append(result)
|
||||
|
||||
|
||||
# Show server stats
|
||||
search_time = response.get('search_time_ms', 0)
|
||||
total_queries = response.get('total_queries', 0)
|
||||
console.print(f"[dim]Search time: {search_time}ms (Query #{total_queries})[/dim]\n")
|
||||
search_time = response.get("search_time_ms", 0)
|
||||
total_queries = response.get("total_queries", 0)
|
||||
console.print(
|
||||
f"[dim]Search time: {search_time}ms (Query #{total_queries})[/dim]\n"
|
||||
)
|
||||
else:
|
||||
console.print(f"[red]Server error:[/red] {response.get('error')}")
|
||||
sys.exit(1)
|
||||
@ -215,7 +221,7 @@ def search(query: str, path: str, top_k: int, type: tuple, lang: tuple, show_con
|
||||
searcher = CodeSearcher(project_path)
|
||||
else:
|
||||
searcher = CodeSearcher(project_path)
|
||||
|
||||
|
||||
# Perform search with timing
|
||||
if monitor:
|
||||
with monitor.measure("Execute Vector Search"):
|
||||
@ -223,7 +229,7 @@ def search(query: str, path: str, top_k: int, type: tuple, lang: tuple, show_con
|
||||
query,
|
||||
top_k=top_k,
|
||||
chunk_types=list(type) if type else None,
|
||||
languages=list(lang) if lang else None
|
||||
languages=list(lang) if lang else None,
|
||||
)
|
||||
else:
|
||||
with console.status(f"[cyan]Searching for: {query}[/cyan]"):
|
||||
@ -231,9 +237,9 @@ def search(query: str, path: str, top_k: int, type: tuple, lang: tuple, show_con
|
||||
query,
|
||||
top_k=top_k,
|
||||
chunk_types=list(type) if type else None,
|
||||
languages=list(lang) if lang else None
|
||||
languages=list(lang) if lang else None,
|
||||
)
|
||||
|
||||
|
||||
# Display results
|
||||
if results:
|
||||
if use_server:
|
||||
@ -243,27 +249,30 @@ def search(query: str, path: str, top_k: int, type: tuple, lang: tuple, show_con
|
||||
display_searcher.display_results(results, show_content=show_content)
|
||||
else:
|
||||
searcher.display_results(results, show_content=show_content)
|
||||
|
||||
|
||||
# Copy first result to clipboard if available
|
||||
try:
|
||||
import pyperclip
|
||||
|
||||
first_result = results[0]
|
||||
location = f"{first_result.file_path}:{first_result.start_line}"
|
||||
pyperclip.copy(location)
|
||||
console.print(f"\n[dim]First result location copied to clipboard: {location}[/dim]")
|
||||
except:
|
||||
pass
|
||||
console.print(
|
||||
f"\n[dim]First result location copied to clipboard: {location}[/dim]"
|
||||
)
|
||||
except (ImportError, OSError):
|
||||
pass # Clipboard not available
|
||||
else:
|
||||
console.print(f"\n[yellow]No results found for: {query}[/yellow]")
|
||||
console.print("\n[dim]Tips:[/dim]")
|
||||
console.print(" • Try different keywords")
|
||||
console.print(" • Use natural language queries")
|
||||
|
||||
|
||||
# Show performance summary
|
||||
if monitor:
|
||||
monitor.print_summary()
|
||||
console.print(" • Check if files are indexed with 'mini-rag stats'")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
console.print(f"\n[bold red]Search error:[/bold red] {e}")
|
||||
logger.exception("Search failed")
|
||||
@ -271,68 +280,69 @@ def search(query: str, path: str, top_k: int, type: tuple, lang: tuple, show_con
|
||||
|
||||
|
||||
@cli.command()
|
||||
@click.option('--path', '-p', type=click.Path(exists=True), default='.',
|
||||
help='Project path')
|
||||
@click.option("--path", "-p", type=click.Path(exists=True), default=".", help="Project path")
|
||||
def stats(path: str):
|
||||
"""Show index statistics."""
|
||||
project_path = Path(path).resolve()
|
||||
|
||||
|
||||
# Check if indexed
|
||||
rag_dir = project_path / '.mini-rag'
|
||||
rag_dir = project_path / ".mini-rag"
|
||||
if not rag_dir.exists():
|
||||
console.print("[red]Error:[/red] Project not indexed. Run 'rag-mini init' first.")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
try:
|
||||
# Get statistics
|
||||
indexer = ProjectIndexer(project_path)
|
||||
index_stats = indexer.get_statistics()
|
||||
|
||||
|
||||
searcher = CodeSearcher(project_path)
|
||||
search_stats = searcher.get_statistics()
|
||||
|
||||
|
||||
# Display project info
|
||||
console.print(f"\n[bold cyan]Project:[/bold cyan] {project_path.name}")
|
||||
console.print(f"[dim]Path: {project_path}[/dim]\n")
|
||||
|
||||
|
||||
# Index statistics table
|
||||
table = Table(title="Index Statistics")
|
||||
table.add_column("Metric", style="cyan")
|
||||
table.add_column("Value", style="green")
|
||||
|
||||
table.add_row("Files Indexed", str(index_stats['file_count']))
|
||||
table.add_row("Total Chunks", str(index_stats['chunk_count']))
|
||||
|
||||
table.add_row("Files Indexed", str(index_stats["file_count"]))
|
||||
table.add_row("Total Chunks", str(index_stats["chunk_count"]))
|
||||
table.add_row("Index Size", f"{index_stats['index_size_mb']:.2f} MB")
|
||||
table.add_row("Last Updated", index_stats['indexed_at'] or "Never")
|
||||
|
||||
table.add_row("Last Updated", index_stats["indexed_at"] or "Never")
|
||||
|
||||
console.print(table)
|
||||
|
||||
|
||||
# Language distribution
|
||||
if 'languages' in search_stats:
|
||||
if "languages" in search_stats:
|
||||
console.print("\n[bold]Language Distribution:[/bold]")
|
||||
lang_table = Table()
|
||||
lang_table.add_column("Language", style="cyan")
|
||||
lang_table.add_column("Chunks", style="green")
|
||||
|
||||
for lang, count in sorted(search_stats['languages'].items(),
|
||||
key=lambda x: x[1], reverse=True):
|
||||
|
||||
for lang, count in sorted(
|
||||
search_stats["languages"].items(), key=lambda x: x[1], reverse=True
|
||||
):
|
||||
lang_table.add_row(lang, str(count))
|
||||
|
||||
|
||||
console.print(lang_table)
|
||||
|
||||
|
||||
# Chunk type distribution
|
||||
if 'chunk_types' in search_stats:
|
||||
if "chunk_types" in search_stats:
|
||||
console.print("\n[bold]Chunk Types:[/bold]")
|
||||
type_table = Table()
|
||||
type_table.add_column("Type", style="cyan")
|
||||
type_table.add_column("Count", style="green")
|
||||
|
||||
for chunk_type, count in sorted(search_stats['chunk_types'].items(),
|
||||
key=lambda x: x[1], reverse=True):
|
||||
|
||||
for chunk_type, count in sorted(
|
||||
search_stats["chunk_types"].items(), key=lambda x: x[1], reverse=True
|
||||
):
|
||||
type_table.add_row(chunk_type, str(count))
|
||||
|
||||
|
||||
console.print(type_table)
|
||||
|
||||
|
||||
except Exception as e:
|
||||
console.print(f"\n[bold red]Error:[/bold red] {e}")
|
||||
logger.exception("Failed to get statistics")
|
||||
@ -340,101 +350,116 @@ def stats(path: str):
|
||||
|
||||
|
||||
@cli.command()
|
||||
@click.option('--path', '-p', type=click.Path(exists=True), default='.',
|
||||
help='Project path')
|
||||
@click.option("--path", "-p", type=click.Path(exists=True), default=".", help="Project path")
|
||||
def debug_schema(path: str):
|
||||
"""Debug vector database schema and sample data."""
|
||||
project_path = Path(path).resolve()
|
||||
|
||||
|
||||
try:
|
||||
rag_dir = project_path / '.mini-rag'
|
||||
|
||||
rag_dir = project_path / ".mini-rag"
|
||||
|
||||
if not rag_dir.exists():
|
||||
console.print("[red]No RAG index found. Run 'rag-mini init' first.[/red]")
|
||||
return
|
||||
|
||||
|
||||
# Connect to database
|
||||
try:
|
||||
import lancedb
|
||||
except ImportError:
|
||||
console.print("[red]LanceDB not available. Install with: pip install lancedb pyarrow[/red]")
|
||||
console.print(
|
||||
"[red]LanceDB not available. Install with: pip install lancedb pyarrow[/red]"
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
db = lancedb.connect(rag_dir)
|
||||
|
||||
|
||||
if "code_vectors" not in db.table_names():
|
||||
console.print("[red]No code_vectors table found.[/red]")
|
||||
return
|
||||
|
||||
|
||||
table = db.open_table("code_vectors")
|
||||
|
||||
|
||||
# Print schema
|
||||
console.print("\n[bold cyan] Table Schema:[/bold cyan]")
|
||||
console.print(table.schema)
|
||||
|
||||
|
||||
# Get sample data
|
||||
import pandas as pd
|
||||
|
||||
df = table.to_pandas()
|
||||
console.print(f"\n[bold cyan] Table Statistics:[/bold cyan]")
|
||||
console.print("\n[bold cyan] Table Statistics:[/bold cyan]")
|
||||
console.print(f"Total rows: {len(df)}")
|
||||
|
||||
|
||||
if len(df) > 0:
|
||||
# Check embedding column
|
||||
console.print(f"\n[bold cyan] Embedding Column Analysis:[/bold cyan]")
|
||||
first_embedding = df['embedding'].iloc[0]
|
||||
console.print("\n[bold cyan] Embedding Column Analysis:[/bold cyan]")
|
||||
first_embedding = df["embedding"].iloc[0]
|
||||
console.print(f"Type: {type(first_embedding)}")
|
||||
if hasattr(first_embedding, 'shape'):
|
||||
if hasattr(first_embedding, "shape"):
|
||||
console.print(f"Shape: {first_embedding.shape}")
|
||||
if hasattr(first_embedding, 'dtype'):
|
||||
if hasattr(first_embedding, "dtype"):
|
||||
console.print(f"Dtype: {first_embedding.dtype}")
|
||||
|
||||
|
||||
# Show first few rows
|
||||
console.print(f"\n[bold cyan] Sample Data (first 3 rows):[/bold cyan]")
|
||||
console.print("\n[bold cyan] Sample Data (first 3 rows):[/bold cyan]")
|
||||
for i in range(min(3, len(df))):
|
||||
row = df.iloc[i]
|
||||
console.print(f"\n[yellow]Row {i}:[/yellow]")
|
||||
console.print(f" chunk_id: {row['chunk_id']}")
|
||||
console.print(f" file_path: {row['file_path']}")
|
||||
console.print(f" content: {row['content'][:50]}...")
|
||||
console.print(f" embedding: {type(row['embedding'])} of length {len(row['embedding']) if hasattr(row['embedding'], '__len__') else 'unknown'}")
|
||||
|
||||
embed_len = (
|
||||
len(row["embedding"])
|
||||
if hasattr(row["embedding"], "__len__")
|
||||
else "unknown"
|
||||
)
|
||||
console.print(f" embedding: {type(row['embedding'])} of length {embed_len}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Schema debug failed: {e}")
|
||||
console.print(f"[red]Error: {e}[/red]")
|
||||
|
||||
|
||||
@cli.command()
|
||||
@click.option('--path', '-p', type=click.Path(exists=True), default='.',
|
||||
help='Project path')
|
||||
@click.option('--delay', '-d', type=float, default=10.0,
|
||||
help='Update delay in seconds (default: 10s for non-invasive)')
|
||||
@click.option('--silent', '-s', is_flag=True, default=False,
|
||||
help='Run silently in background without output')
|
||||
@click.option("--path", "-p", type=click.Path(exists=True), default=".", help="Project path")
|
||||
@click.option(
|
||||
"--delay",
|
||||
"-d",
|
||||
type=float,
|
||||
default=10.0,
|
||||
help="Update delay in seconds (default: 10s for non-invasive)",
|
||||
)
|
||||
@click.option(
|
||||
"--silent",
|
||||
"-s",
|
||||
is_flag=True,
|
||||
default=False,
|
||||
help="Run silently in background without output",
|
||||
)
|
||||
def watch(path: str, delay: float, silent: bool):
|
||||
"""Watch for file changes and update index automatically (non-invasive by default)."""
|
||||
project_path = Path(path).resolve()
|
||||
|
||||
|
||||
# Check if indexed
|
||||
rag_dir = project_path / '.mini-rag'
|
||||
rag_dir = project_path / ".mini-rag"
|
||||
if not rag_dir.exists():
|
||||
if not silent:
|
||||
console.print("[red]Error:[/red] Project not indexed. Run 'rag-mini init' first.")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
try:
|
||||
# Always use non-invasive watcher
|
||||
watcher = NonInvasiveFileWatcher(project_path)
|
||||
|
||||
|
||||
# Only show startup messages if not silent
|
||||
if not silent:
|
||||
console.print(f"\n[bold green]🕊️ Non-Invasive Watcher:[/bold green] {project_path}")
|
||||
console.print("[dim]Low CPU/memory usage - won't interfere with development[/dim]")
|
||||
console.print(f"[dim]Update delay: {delay}s[/dim]")
|
||||
console.print("\n[yellow]Press Ctrl+C to stop watching[/yellow]\n")
|
||||
|
||||
|
||||
# Start watching
|
||||
watcher.start()
|
||||
|
||||
|
||||
if silent:
|
||||
# Silent mode: just wait for interrupt without any output
|
||||
try:
|
||||
@ -448,10 +473,10 @@ def watch(path: str, delay: float, silent: bool):
|
||||
while True:
|
||||
try:
|
||||
time.sleep(1)
|
||||
|
||||
|
||||
# Get current statistics
|
||||
stats = watcher.get_statistics()
|
||||
|
||||
|
||||
# Only update display if something changed
|
||||
if stats != last_stats:
|
||||
# Clear previous line
|
||||
@ -459,26 +484,28 @@ def watch(path: str, delay: float, silent: bool):
|
||||
f"\r[green]✓[/green] Files updated: {stats.get('files_processed', 0)} | "
|
||||
f"[red]✗[/red] Failed: {stats.get('files_dropped', 0)} | "
|
||||
f"[cyan]⧗[/cyan] Queue: {stats['queue_size']}",
|
||||
end=""
|
||||
end="",
|
||||
)
|
||||
last_stats = stats
|
||||
|
||||
|
||||
except KeyboardInterrupt:
|
||||
break
|
||||
|
||||
|
||||
# Stop watcher
|
||||
if not silent:
|
||||
console.print("\n\n[yellow]Stopping watcher...[/yellow]")
|
||||
watcher.stop()
|
||||
|
||||
|
||||
# Show final stats only if not silent
|
||||
if not silent:
|
||||
final_stats = watcher.get_statistics()
|
||||
console.print(f"\n[bold green]Watch Summary:[/bold green]")
|
||||
console.print("\n[bold green]Watch Summary:[/bold green]")
|
||||
console.print(f"Files updated: {final_stats.get('files_processed', 0)}")
|
||||
console.print(f"Files failed: {final_stats.get('files_dropped', 0)}")
|
||||
console.print(f"Total runtime: {final_stats.get('uptime_seconds', 0):.1f} seconds\n")
|
||||
|
||||
console.print(
|
||||
f"Total runtime: {final_stats.get('uptime_seconds', 0):.1f} seconds\n"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
console.print(f"\n[bold red]Error:[/bold red] {e}")
|
||||
logger.exception("Watch failed")
|
||||
@ -486,86 +513,81 @@ def watch(path: str, delay: float, silent: bool):
|
||||
|
||||
|
||||
@cli.command()
|
||||
@click.argument('function_name')
|
||||
@click.option('--path', '-p', type=click.Path(exists=True), default='.',
|
||||
help='Project path')
|
||||
@click.option('--top-k', '-k', type=int, default=5,
|
||||
help='Maximum results')
|
||||
@click.argument("function_name")
|
||||
@click.option("--path", "-p", type=click.Path(exists=True), default=".", help="Project path")
|
||||
@click.option("--top-k", "-k", type=int, default=5, help="Maximum results")
|
||||
def find_function(function_name: str, path: str, top_k: int):
|
||||
"""Find a specific function by name."""
|
||||
project_path = Path(path).resolve()
|
||||
|
||||
|
||||
try:
|
||||
searcher = CodeSearcher(project_path)
|
||||
results = searcher.get_function(function_name, top_k=top_k)
|
||||
|
||||
|
||||
if results:
|
||||
searcher.display_results(results, show_content=True)
|
||||
else:
|
||||
console.print(f"[yellow]No functions found matching: {function_name}[/yellow]")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
console.print(f"[red]Error:[/red] {e}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
@cli.command()
|
||||
@click.argument('class_name')
|
||||
@click.option('--path', '-p', type=click.Path(exists=True), default='.',
|
||||
help='Project path')
|
||||
@click.option('--top-k', '-k', type=int, default=5,
|
||||
help='Maximum results')
|
||||
@click.argument("class_name")
|
||||
@click.option("--path", "-p", type=click.Path(exists=True), default=".", help="Project path")
|
||||
@click.option("--top-k", "-k", type=int, default=5, help="Maximum results")
|
||||
def find_class(class_name: str, path: str, top_k: int):
|
||||
"""Find a specific class by name."""
|
||||
project_path = Path(path).resolve()
|
||||
|
||||
|
||||
try:
|
||||
searcher = CodeSearcher(project_path)
|
||||
results = searcher.get_class(class_name, top_k=top_k)
|
||||
|
||||
|
||||
if results:
|
||||
searcher.display_results(results, show_content=True)
|
||||
else:
|
||||
console.print(f"[yellow]No classes found matching: {class_name}[/yellow]")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
console.print(f"[red]Error:[/red] {e}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
@cli.command()
|
||||
@click.option('--path', '-p', type=click.Path(exists=True), default='.',
|
||||
help='Project path')
|
||||
@click.option("--path", "-p", type=click.Path(exists=True), default=".", help="Project path")
|
||||
def update(path: str):
|
||||
"""Update index for changed files."""
|
||||
project_path = Path(path).resolve()
|
||||
|
||||
|
||||
# Check if indexed
|
||||
rag_dir = project_path / '.mini-rag'
|
||||
rag_dir = project_path / ".mini-rag"
|
||||
if not rag_dir.exists():
|
||||
console.print("[red]Error:[/red] Project not indexed. Run 'rag-mini init' first.")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
try:
|
||||
indexer = ProjectIndexer(project_path)
|
||||
|
||||
|
||||
console.print(f"\n[cyan]Checking for changes in {project_path}...[/cyan]\n")
|
||||
|
||||
|
||||
stats = indexer.index_project(force_reindex=False)
|
||||
|
||||
if stats['files_indexed'] > 0:
|
||||
|
||||
if stats["files_indexed"] > 0:
|
||||
console.print(f"[green][/green] Updated {stats['files_indexed']} files")
|
||||
console.print(f"Created {stats['chunks_created']} new chunks")
|
||||
else:
|
||||
console.print("[green] All files are up to date![/green]")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
console.print(f"[red]Error:[/red] {e}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
@cli.command()
|
||||
@click.option('--show-code', '-c', is_flag=True, help='Show example code')
|
||||
@click.option("--show-code", "-c", is_flag=True, help="Show example code")
|
||||
def info(show_code: bool):
|
||||
"""Show information about Mini RAG."""
|
||||
# Create info panel
|
||||
@ -590,13 +612,13 @@ def info(show_code: bool):
|
||||
• Search: <50ms latency
|
||||
• Storage: ~200MB for 10k files
|
||||
"""
|
||||
|
||||
|
||||
panel = Panel(info_text, title="About Mini RAG", border_style="cyan")
|
||||
console.print(panel)
|
||||
|
||||
|
||||
if show_code:
|
||||
console.print("\n[bold]Example Usage:[/bold]\n")
|
||||
|
||||
|
||||
code = """# Initialize a project
|
||||
rag-mini init
|
||||
|
||||
@ -613,32 +635,30 @@ rag-mini watch
|
||||
|
||||
# Get statistics
|
||||
rag-mini stats"""
|
||||
|
||||
|
||||
syntax = Syntax(code, "bash", theme="monokai")
|
||||
console.print(syntax)
|
||||
|
||||
|
||||
@cli.command()
|
||||
@click.option('--path', '-p', type=click.Path(exists=True), default='.',
|
||||
help='Project path')
|
||||
@click.option('--port', type=int, default=7777,
|
||||
help='Server port')
|
||||
@click.option("--path", "-p", type=click.Path(exists=True), default=".", help="Project path")
|
||||
@click.option("--port", type=int, default=7777, help="Server port")
|
||||
def server(path: str, port: int):
|
||||
"""Start persistent RAG server (keeps model loaded)."""
|
||||
project_path = Path(path).resolve()
|
||||
|
||||
|
||||
# Check if indexed
|
||||
rag_dir = project_path / '.mini-rag'
|
||||
rag_dir = project_path / ".mini-rag"
|
||||
if not rag_dir.exists():
|
||||
console.print("[red]Error:[/red] Project not indexed. Run 'rag-mini init' first.")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
try:
|
||||
console.print(f"[bold cyan]Starting RAG server for:[/bold cyan] {project_path}")
|
||||
console.print(f"[dim]Port: {port}[/dim]\n")
|
||||
|
||||
|
||||
start_server(project_path, port)
|
||||
|
||||
|
||||
except KeyboardInterrupt:
|
||||
console.print("\n[yellow]Server stopped by user[/yellow]")
|
||||
except Exception as e:
|
||||
@ -648,65 +668,67 @@ def server(path: str, port: int):
|
||||
|
||||
|
||||
@cli.command()
|
||||
@click.option('--path', '-p', type=click.Path(exists=True), default='.',
|
||||
help='Project path')
|
||||
@click.option('--port', type=int, default=7777,
|
||||
help='Server port')
|
||||
@click.option('--discovery', '-d', is_flag=True,
|
||||
help='Run codebase discovery analysis')
|
||||
@click.option("--path", "-p", type=click.Path(exists=True), default=".", help="Project path")
|
||||
@click.option("--port", type=int, default=7777, help="Server port")
|
||||
@click.option("--discovery", "-d", is_flag=True, help="Run codebase discovery analysis")
|
||||
def status(path: str, port: int, discovery: bool):
|
||||
"""Show comprehensive RAG system status with optional codebase discovery."""
|
||||
project_path = Path(path).resolve()
|
||||
|
||||
|
||||
# Print header
|
||||
console.print(f"\n[bold cyan]RAG System Status for:[/bold cyan] {project_path.name}")
|
||||
console.print(f"[dim]Path: {project_path}[/dim]\n")
|
||||
|
||||
|
||||
# Check folder contents
|
||||
console.print("[bold]📁 Folder Contents:[/bold]")
|
||||
try:
|
||||
all_files = list(project_path.rglob("*"))
|
||||
source_files = [f for f in all_files if f.is_file() and f.suffix in ['.py', '.js', '.ts', '.go', '.java', '.cpp', '.c', '.h']]
|
||||
|
||||
source_files = [
|
||||
f
|
||||
for f in all_files
|
||||
if f.is_file()
|
||||
and f.suffix in [".py", ".js", ".ts", ".go", ".java", ".cpp", ".c", ".h"]
|
||||
]
|
||||
|
||||
console.print(f" • Total files: {len([f for f in all_files if f.is_file()])}")
|
||||
console.print(f" • Source files: {len(source_files)}")
|
||||
console.print(f" • Directories: {len([f for f in all_files if f.is_dir()])}")
|
||||
except Exception as e:
|
||||
console.print(f" [red]Error reading folder: {e}[/red]")
|
||||
|
||||
|
||||
# Check index status
|
||||
console.print("\n[bold]🗂️ Index Status:[/bold]")
|
||||
rag_dir = project_path / '.mini-rag'
|
||||
rag_dir = project_path / ".mini-rag"
|
||||
if rag_dir.exists():
|
||||
try:
|
||||
indexer = ProjectIndexer(project_path)
|
||||
index_stats = indexer.get_statistics()
|
||||
|
||||
console.print(f" • Status: [green]✅ Indexed[/green]")
|
||||
|
||||
console.print(" • Status: [green]✅ Indexed[/green]")
|
||||
console.print(f" • Files indexed: {index_stats['file_count']}")
|
||||
console.print(f" • Total chunks: {index_stats['chunk_count']}")
|
||||
console.print(f" • Index size: {index_stats['index_size_mb']:.2f} MB")
|
||||
console.print(f" • Last updated: {index_stats['indexed_at'] or 'Never'}")
|
||||
except Exception as e:
|
||||
console.print(f" • Status: [yellow]⚠️ Index exists but has issues[/yellow]")
|
||||
console.print(" • Status: [yellow]⚠️ Index exists but has issues[/yellow]")
|
||||
console.print(f" • Error: {e}")
|
||||
else:
|
||||
console.print(" • Status: [red]❌ Not indexed[/red]")
|
||||
console.print(" • Run 'rag-mini init' to initialize")
|
||||
|
||||
|
||||
# Check server status
|
||||
console.print("\n[bold]🚀 Server Status:[/bold]")
|
||||
client = RAGClient(port)
|
||||
|
||||
|
||||
if client.is_running():
|
||||
console.print(f" • Status: [green]✅ Running on port {port}[/green]")
|
||||
|
||||
|
||||
# Try to get server info
|
||||
try:
|
||||
response = client.search("test", top_k=1) # Minimal query to get stats
|
||||
if response.get('success'):
|
||||
uptime = response.get('server_uptime', 0)
|
||||
queries = response.get('total_queries', 0)
|
||||
if response.get("success"):
|
||||
uptime = response.get("server_uptime", 0)
|
||||
queries = response.get("total_queries", 0)
|
||||
console.print(f" • Uptime: {uptime}s")
|
||||
console.print(f" • Total queries: {queries}")
|
||||
except Exception as e:
|
||||
@ -714,47 +736,51 @@ def status(path: str, port: int, discovery: bool):
|
||||
else:
|
||||
console.print(f" • Status: [red]❌ Not running on port {port}[/red]")
|
||||
console.print(" • Run 'rag-mini server' to start the server")
|
||||
|
||||
|
||||
# Run codebase discovery if requested
|
||||
if discovery and rag_dir.exists():
|
||||
console.print("\n[bold]🧠 Codebase Discovery:[/bold]")
|
||||
try:
|
||||
# Import and run intelligent discovery
|
||||
import sys
|
||||
|
||||
# Add tools directory to path
|
||||
|
||||
# Add tools directory to path
|
||||
tools_path = Path(__file__).parent.parent.parent / "tools"
|
||||
if tools_path.exists():
|
||||
sys.path.insert(0, str(tools_path))
|
||||
from intelligent_codebase_discovery import IntelligentCodebaseDiscovery
|
||||
|
||||
|
||||
discovery_system = IntelligentCodebaseDiscovery(project_path)
|
||||
discovery_system.run_lightweight_discovery()
|
||||
else:
|
||||
console.print(" [yellow]Discovery system not found[/yellow]")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
console.print(f" [red]Discovery failed: {e}[/red]")
|
||||
|
||||
|
||||
elif discovery and not rag_dir.exists():
|
||||
console.print("\n[bold]🧠 Codebase Discovery:[/bold]")
|
||||
console.print(" [yellow]❌ Cannot run discovery - project not indexed[/yellow]")
|
||||
console.print(" Run 'rag-mini init' first to initialize the system")
|
||||
|
||||
|
||||
# Show next steps
|
||||
console.print("\n[bold]📋 Next Steps:[/bold]")
|
||||
if not rag_dir.exists():
|
||||
console.print(" 1. Run [cyan]rag-mini init[/cyan] to initialize the RAG system")
|
||||
console.print(" 2. Use [cyan]rag-mini search \"your query\"[/cyan] to search code")
|
||||
console.print(' 2. Use [cyan]rag-mini search "your query"[/cyan] to search code')
|
||||
elif not client.is_running():
|
||||
console.print(" 1. Run [cyan]rag-mini server[/cyan] to start the server")
|
||||
console.print(" 2. Use [cyan]rag-mini search \"your query\"[/cyan] to search code")
|
||||
console.print(' 2. Use [cyan]rag-mini search "your query"[/cyan] to search code')
|
||||
else:
|
||||
console.print(" • System ready! Use [cyan]rag-mini search \"your query\"[/cyan] to search")
|
||||
console.print(" • Add [cyan]--discovery[/cyan] flag to run intelligent codebase analysis")
|
||||
|
||||
console.print(
|
||||
' • System ready! Use [cyan]rag-mini search "your query"[/cyan] to search'
|
||||
)
|
||||
console.print(
|
||||
" • Add [cyan]--discovery[/cyan] flag to run intelligent codebase analysis"
|
||||
)
|
||||
|
||||
console.print()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
cli()
|
||||
if __name__ == "__main__":
|
||||
cli()
|
||||
|
||||
@ -3,11 +3,12 @@ Configuration management for FSS-Mini-RAG.
|
||||
Handles loading, saving, and validation of YAML config files.
|
||||
"""
|
||||
|
||||
import yaml
|
||||
import logging
|
||||
from dataclasses import asdict, dataclass
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any, Optional
|
||||
from dataclasses import dataclass, asdict
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import yaml
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -15,6 +16,7 @@ logger = logging.getLogger(__name__)
|
||||
@dataclass
|
||||
class ChunkingConfig:
|
||||
"""Configuration for text chunking."""
|
||||
|
||||
max_size: int = 2000
|
||||
min_size: int = 150
|
||||
strategy: str = "semantic" # "semantic" or "fixed"
|
||||
@ -23,6 +25,7 @@ class ChunkingConfig:
|
||||
@dataclass
|
||||
class StreamingConfig:
|
||||
"""Configuration for large file streaming."""
|
||||
|
||||
enabled: bool = True
|
||||
threshold_bytes: int = 1048576 # 1MB
|
||||
|
||||
@ -30,21 +33,22 @@ class StreamingConfig:
|
||||
@dataclass
|
||||
class FilesConfig:
|
||||
"""Configuration for file processing."""
|
||||
|
||||
min_file_size: int = 50
|
||||
exclude_patterns: list = None
|
||||
include_patterns: list = None
|
||||
|
||||
|
||||
def __post_init__(self):
|
||||
if self.exclude_patterns is None:
|
||||
self.exclude_patterns = [
|
||||
"node_modules/**",
|
||||
".git/**",
|
||||
".git/**",
|
||||
"__pycache__/**",
|
||||
"*.pyc",
|
||||
".venv/**",
|
||||
"venv/**",
|
||||
"build/**",
|
||||
"dist/**"
|
||||
"dist/**",
|
||||
]
|
||||
if self.include_patterns is None:
|
||||
self.include_patterns = ["**/*"] # Include everything by default
|
||||
@ -53,6 +57,7 @@ class FilesConfig:
|
||||
@dataclass
|
||||
class EmbeddingConfig:
|
||||
"""Configuration for embedding generation."""
|
||||
|
||||
preferred_method: str = "ollama" # "ollama", "ml", "hash", "auto"
|
||||
ollama_model: str = "nomic-embed-text"
|
||||
ollama_host: str = "localhost:11434"
|
||||
@ -63,52 +68,51 @@ class EmbeddingConfig:
|
||||
@dataclass
|
||||
class SearchConfig:
|
||||
"""Configuration for search behavior."""
|
||||
|
||||
default_top_k: int = 10
|
||||
enable_bm25: bool = True
|
||||
similarity_threshold: float = 0.1
|
||||
expand_queries: bool = False # Enable automatic query expansion
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass
|
||||
class LLMConfig:
|
||||
"""Configuration for LLM synthesis and query expansion."""
|
||||
|
||||
# Core settings
|
||||
synthesis_model: str = "auto" # "auto", "qwen3:1.7b", "qwen2.5:1.5b", etc.
|
||||
expansion_model: str = "auto" # Usually same as synthesis_model
|
||||
max_expansion_terms: int = 8 # Maximum additional terms to add
|
||||
enable_synthesis: bool = False # Enable by default when --synthesize used
|
||||
max_expansion_terms: int = 8 # Maximum additional terms to add
|
||||
enable_synthesis: bool = False # Enable by default when --synthesize used
|
||||
synthesis_temperature: float = 0.3
|
||||
enable_thinking: bool = True # Enable thinking mode for Qwen3 models
|
||||
cpu_optimized: bool = True # Prefer lightweight models
|
||||
|
||||
cpu_optimized: bool = True # Prefer lightweight models
|
||||
|
||||
# Context window configuration (critical for RAG performance)
|
||||
context_window: int = 16384 # Context window size in tokens (16K recommended)
|
||||
auto_context: bool = True # Auto-adjust context based on model capabilities
|
||||
|
||||
context_window: int = 16384 # Context window size in tokens (16K recommended)
|
||||
auto_context: bool = True # Auto-adjust context based on model capabilities
|
||||
|
||||
# Model preference rankings (configurable)
|
||||
model_rankings: list = None # Will be set in __post_init__
|
||||
|
||||
model_rankings: list = None # Will be set in __post_init__
|
||||
|
||||
# Provider-specific settings (for different LLM providers)
|
||||
provider: str = "ollama" # "ollama", "openai", "anthropic"
|
||||
provider: str = "ollama" # "ollama", "openai", "anthropic"
|
||||
ollama_host: str = "localhost:11434" # Ollama connection
|
||||
api_key: Optional[str] = None # API key for cloud providers
|
||||
api_base: Optional[str] = None # Base URL for API (e.g., OpenRouter)
|
||||
timeout: int = 20 # Request timeout in seconds
|
||||
|
||||
api_base: Optional[str] = None # Base URL for API (e.g., OpenRouter)
|
||||
timeout: int = 20 # Request timeout in seconds
|
||||
|
||||
def __post_init__(self):
|
||||
if self.model_rankings is None:
|
||||
# Default model preference rankings (can be overridden in config file)
|
||||
self.model_rankings = [
|
||||
# Testing model (prioritized for current testing phase)
|
||||
"qwen3:1.7b",
|
||||
|
||||
# Ultra-efficient models (perfect for CPU-only systems)
|
||||
"qwen3:0.6b",
|
||||
|
||||
"qwen3:0.6b",
|
||||
# Recommended model (excellent quality but larger)
|
||||
"qwen3:4b",
|
||||
|
||||
# Common fallbacks (prioritize Qwen models)
|
||||
# Common fallbacks (prioritize Qwen models)
|
||||
"qwen2.5:1.5b",
|
||||
"qwen2.5:3b",
|
||||
]
|
||||
@ -117,24 +121,26 @@ class LLMConfig:
|
||||
@dataclass
|
||||
class UpdateConfig:
|
||||
"""Configuration for auto-update system."""
|
||||
auto_check: bool = True # Check for updates automatically
|
||||
|
||||
auto_check: bool = True # Check for updates automatically
|
||||
check_frequency_hours: int = 24 # How often to check (hours)
|
||||
auto_install: bool = False # Auto-install without asking (not recommended)
|
||||
backup_before_update: bool = True # Create backup before updating
|
||||
notify_beta_releases: bool = False # Include beta/pre-releases
|
||||
auto_install: bool = False # Auto-install without asking (not recommended)
|
||||
backup_before_update: bool = True # Create backup before updating
|
||||
notify_beta_releases: bool = False # Include beta/pre-releases
|
||||
|
||||
|
||||
@dataclass
|
||||
class RAGConfig:
|
||||
"""Main RAG system configuration."""
|
||||
|
||||
chunking: ChunkingConfig = None
|
||||
streaming: StreamingConfig = None
|
||||
streaming: StreamingConfig = None
|
||||
files: FilesConfig = None
|
||||
embedding: EmbeddingConfig = None
|
||||
search: SearchConfig = None
|
||||
llm: LLMConfig = None
|
||||
updates: UpdateConfig = None
|
||||
|
||||
|
||||
def __post_init__(self):
|
||||
if self.chunking is None:
|
||||
self.chunking = ChunkingConfig()
|
||||
@ -154,12 +160,12 @@ class RAGConfig:
|
||||
|
||||
class ConfigManager:
|
||||
"""Manages configuration loading, saving, and validation."""
|
||||
|
||||
|
||||
def __init__(self, project_path: Path):
|
||||
self.project_path = Path(project_path)
|
||||
self.rag_dir = self.project_path / '.mini-rag'
|
||||
self.config_path = self.rag_dir / 'config.yaml'
|
||||
|
||||
self.rag_dir = self.project_path / ".mini-rag"
|
||||
self.config_path = self.rag_dir / "config.yaml"
|
||||
|
||||
def load_config(self) -> RAGConfig:
|
||||
"""Load configuration from YAML file or create default."""
|
||||
if not self.config_path.exists():
|
||||
@ -167,75 +173,81 @@ class ConfigManager:
|
||||
config = RAGConfig()
|
||||
self.save_config(config)
|
||||
return config
|
||||
|
||||
|
||||
try:
|
||||
with open(self.config_path, 'r') as f:
|
||||
with open(self.config_path, "r") as f:
|
||||
data = yaml.safe_load(f)
|
||||
|
||||
|
||||
if not data:
|
||||
logger.warning("Empty config file, using defaults")
|
||||
return RAGConfig()
|
||||
|
||||
|
||||
# Convert nested dicts back to dataclass instances
|
||||
config = RAGConfig()
|
||||
|
||||
if 'chunking' in data:
|
||||
config.chunking = ChunkingConfig(**data['chunking'])
|
||||
if 'streaming' in data:
|
||||
config.streaming = StreamingConfig(**data['streaming'])
|
||||
if 'files' in data:
|
||||
config.files = FilesConfig(**data['files'])
|
||||
if 'embedding' in data:
|
||||
config.embedding = EmbeddingConfig(**data['embedding'])
|
||||
if 'search' in data:
|
||||
config.search = SearchConfig(**data['search'])
|
||||
if 'llm' in data:
|
||||
config.llm = LLMConfig(**data['llm'])
|
||||
|
||||
|
||||
if "chunking" in data:
|
||||
config.chunking = ChunkingConfig(**data["chunking"])
|
||||
if "streaming" in data:
|
||||
config.streaming = StreamingConfig(**data["streaming"])
|
||||
if "files" in data:
|
||||
config.files = FilesConfig(**data["files"])
|
||||
if "embedding" in data:
|
||||
config.embedding = EmbeddingConfig(**data["embedding"])
|
||||
if "search" in data:
|
||||
config.search = SearchConfig(**data["search"])
|
||||
if "llm" in data:
|
||||
config.llm = LLMConfig(**data["llm"])
|
||||
|
||||
return config
|
||||
|
||||
|
||||
except yaml.YAMLError as e:
|
||||
# YAML syntax error - help user fix it instead of silent fallback
|
||||
error_msg = f"⚠️ Config file has YAML syntax error at line {getattr(e, 'problem_mark', 'unknown')}: {e}"
|
||||
error_msg = (
|
||||
f"⚠️ Config file has YAML syntax error at line "
|
||||
f"{getattr(e, 'problem_mark', 'unknown')}: {e}"
|
||||
)
|
||||
logger.error(error_msg)
|
||||
print(f"\n{error_msg}")
|
||||
print(f"Config file: {self.config_path}")
|
||||
print("💡 Check YAML syntax (indentation, quotes, colons)")
|
||||
print("💡 Or delete config file to reset to defaults")
|
||||
return RAGConfig() # Still return defaults but warn user
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to load config from {self.config_path}: {e}")
|
||||
logger.info("Using default configuration")
|
||||
return RAGConfig()
|
||||
|
||||
|
||||
def save_config(self, config: RAGConfig):
|
||||
"""Save configuration to YAML file with comments."""
|
||||
try:
|
||||
self.rag_dir.mkdir(exist_ok=True)
|
||||
|
||||
|
||||
# Convert to dict for YAML serialization
|
||||
config_dict = asdict(config)
|
||||
|
||||
|
||||
# Create YAML content with comments
|
||||
yaml_content = self._create_yaml_with_comments(config_dict)
|
||||
|
||||
|
||||
# Write with basic file locking to prevent corruption
|
||||
with open(self.config_path, 'w') as f:
|
||||
with open(self.config_path, "w") as f:
|
||||
try:
|
||||
import fcntl
|
||||
fcntl.flock(f.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB) # Non-blocking exclusive lock
|
||||
|
||||
fcntl.flock(
|
||||
f.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB
|
||||
) # Non-blocking exclusive lock
|
||||
f.write(yaml_content)
|
||||
fcntl.flock(f.fileno(), fcntl.LOCK_UN) # Unlock
|
||||
except (OSError, ImportError):
|
||||
# Fallback for Windows or if fcntl unavailable
|
||||
f.write(yaml_content)
|
||||
|
||||
|
||||
logger.info(f"Configuration saved to {self.config_path}")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to save config to {self.config_path}: {e}")
|
||||
|
||||
|
||||
def _create_yaml_with_comments(self, config_dict: Dict[str, Any]) -> str:
|
||||
"""Create YAML content with helpful comments."""
|
||||
yaml_lines = [
|
||||
@ -245,93 +257,97 @@ class ConfigManager:
|
||||
"",
|
||||
"# Text chunking settings",
|
||||
"chunking:",
|
||||
f" max_size: {config_dict['chunking']['max_size']} # Maximum characters per chunk",
|
||||
f" min_size: {config_dict['chunking']['min_size']} # Minimum characters per chunk",
|
||||
f" strategy: {config_dict['chunking']['strategy']} # 'semantic' (language-aware) or 'fixed'",
|
||||
f" max_size: {config_dict['chunking']['max_size']} # Max chars per chunk",
|
||||
f" min_size: {config_dict['chunking']['min_size']} # Min chars per chunk",
|
||||
f" strategy: {config_dict['chunking']['strategy']} # 'semantic' or 'fixed'",
|
||||
"",
|
||||
"# Large file streaming settings",
|
||||
"# Large file streaming settings",
|
||||
"streaming:",
|
||||
f" enabled: {str(config_dict['streaming']['enabled']).lower()}",
|
||||
f" threshold_bytes: {config_dict['streaming']['threshold_bytes']} # Files larger than this use streaming (1MB)",
|
||||
f" threshold_bytes: {config_dict['streaming']['threshold_bytes']} # Stream files >1MB",
|
||||
"",
|
||||
"# File processing settings",
|
||||
"files:",
|
||||
f" min_file_size: {config_dict['files']['min_file_size']} # Skip files smaller than this",
|
||||
f" min_file_size: {config_dict['files']['min_file_size']} # Skip small files",
|
||||
" exclude_patterns:",
|
||||
]
|
||||
|
||||
for pattern in config_dict['files']['exclude_patterns']:
|
||||
yaml_lines.append(f" - \"{pattern}\"")
|
||||
|
||||
yaml_lines.extend([
|
||||
" include_patterns:",
|
||||
" - \"**/*\" # Include all files by default",
|
||||
"",
|
||||
"# Embedding generation settings",
|
||||
"embedding:",
|
||||
f" preferred_method: {config_dict['embedding']['preferred_method']} # 'ollama', 'ml', 'hash', or 'auto'",
|
||||
f" ollama_model: {config_dict['embedding']['ollama_model']}",
|
||||
f" ollama_host: {config_dict['embedding']['ollama_host']}",
|
||||
f" ml_model: {config_dict['embedding']['ml_model']}",
|
||||
f" batch_size: {config_dict['embedding']['batch_size']} # Embeddings processed per batch",
|
||||
"",
|
||||
"# Search behavior settings",
|
||||
"search:",
|
||||
f" default_top_k: {config_dict['search']['default_top_k']} # Default number of top results",
|
||||
f" enable_bm25: {str(config_dict['search']['enable_bm25']).lower()} # Enable keyword matching boost",
|
||||
f" similarity_threshold: {config_dict['search']['similarity_threshold']} # Minimum similarity score",
|
||||
f" expand_queries: {str(config_dict['search']['expand_queries']).lower()} # Enable automatic query expansion",
|
||||
"",
|
||||
"# LLM synthesis and query expansion settings",
|
||||
"llm:",
|
||||
f" ollama_host: {config_dict['llm']['ollama_host']}",
|
||||
f" synthesis_model: {config_dict['llm']['synthesis_model']} # 'auto', 'qwen3:1.7b', etc.",
|
||||
f" expansion_model: {config_dict['llm']['expansion_model']} # Usually same as synthesis_model",
|
||||
f" max_expansion_terms: {config_dict['llm']['max_expansion_terms']} # Maximum terms to add to queries",
|
||||
f" enable_synthesis: {str(config_dict['llm']['enable_synthesis']).lower()} # Enable synthesis by default",
|
||||
f" synthesis_temperature: {config_dict['llm']['synthesis_temperature']} # LLM temperature for analysis",
|
||||
"",
|
||||
" # Context window configuration (critical for RAG performance)",
|
||||
" # 💡 Sizing guide: 2K=1 question, 4K=1-2 questions, 8K=manageable, 16K=most users",
|
||||
" # 32K=large codebases, 64K+=power users only",
|
||||
" # ⚠️ Larger contexts use exponentially more CPU/memory - only increase if needed",
|
||||
" # 🔧 Low context limits? Try smaller topk, better search terms, or archive noise",
|
||||
f" context_window: {config_dict['llm']['context_window']} # Context size in tokens",
|
||||
f" auto_context: {str(config_dict['llm']['auto_context']).lower()} # Auto-adjust context based on model capabilities",
|
||||
"",
|
||||
" model_rankings: # Preferred model order (edit to change priority)",
|
||||
])
|
||||
|
||||
|
||||
for pattern in config_dict["files"]["exclude_patterns"]:
|
||||
yaml_lines.append(f' - "{pattern}"')
|
||||
|
||||
yaml_lines.extend(
|
||||
[
|
||||
" include_patterns:",
|
||||
' - "**/*" # Include all files by default',
|
||||
"",
|
||||
"# Embedding generation settings",
|
||||
"embedding:",
|
||||
f" preferred_method: {config_dict['embedding']['preferred_method']} # Method",
|
||||
f" ollama_model: {config_dict['embedding']['ollama_model']}",
|
||||
f" ollama_host: {config_dict['embedding']['ollama_host']}",
|
||||
f" ml_model: {config_dict['embedding']['ml_model']}",
|
||||
f" batch_size: {config_dict['embedding']['batch_size']} # Per batch",
|
||||
"",
|
||||
"# Search behavior settings",
|
||||
"search:",
|
||||
f" default_top_k: {config_dict['search']['default_top_k']} # Top results",
|
||||
f" enable_bm25: {str(config_dict['search']['enable_bm25']).lower()} # Keyword boost",
|
||||
f" similarity_threshold: {config_dict['search']['similarity_threshold']} # Min score",
|
||||
f" expand_queries: {str(config_dict['search']['expand_queries']).lower()} # Auto expand",
|
||||
"",
|
||||
"# LLM synthesis and query expansion settings",
|
||||
"llm:",
|
||||
f" ollama_host: {config_dict['llm']['ollama_host']}",
|
||||
f" synthesis_model: {config_dict['llm']['synthesis_model']} # Model name",
|
||||
f" expansion_model: {config_dict['llm']['expansion_model']} # Model name",
|
||||
f" max_expansion_terms: {config_dict['llm']['max_expansion_terms']} # Max terms",
|
||||
f" enable_synthesis: {str(config_dict['llm']['enable_synthesis']).lower()} # Enable synthesis by default",
|
||||
f" synthesis_temperature: {config_dict['llm']['synthesis_temperature']} # LLM temperature for analysis",
|
||||
"",
|
||||
" # Context window configuration (critical for RAG performance)",
|
||||
" # 💡 Sizing guide: 2K=1 question, 4K=1-2 questions, 8K=manageable, 16K=most users",
|
||||
" # 32K=large codebases, 64K+=power users only",
|
||||
" # ⚠️ Larger contexts use exponentially more CPU/memory - only increase if needed",
|
||||
" # 🔧 Low context limits? Try smaller topk, better search terms, or archive noise",
|
||||
f" context_window: {config_dict['llm']['context_window']} # Context size in tokens",
|
||||
f" auto_context: {str(config_dict['llm']['auto_context']).lower()} # Auto-adjust context based on model capabilities",
|
||||
"",
|
||||
" model_rankings: # Preferred model order (edit to change priority)",
|
||||
]
|
||||
)
|
||||
|
||||
# Add model rankings list
|
||||
if 'model_rankings' in config_dict['llm'] and config_dict['llm']['model_rankings']:
|
||||
for model in config_dict['llm']['model_rankings'][:10]: # Show first 10
|
||||
yaml_lines.append(f" - \"{model}\"")
|
||||
if len(config_dict['llm']['model_rankings']) > 10:
|
||||
if "model_rankings" in config_dict["llm"] and config_dict["llm"]["model_rankings"]:
|
||||
for model in config_dict["llm"]["model_rankings"][:10]: # Show first 10
|
||||
yaml_lines.append(f' - "{model}"')
|
||||
if len(config_dict["llm"]["model_rankings"]) > 10:
|
||||
yaml_lines.append(" # ... (edit config to see all options)")
|
||||
|
||||
|
||||
# Add update settings
|
||||
yaml_lines.extend([
|
||||
"",
|
||||
"# Auto-update system settings",
|
||||
"updates:",
|
||||
f" auto_check: {str(config_dict['updates']['auto_check']).lower()} # Check for updates automatically",
|
||||
f" check_frequency_hours: {config_dict['updates']['check_frequency_hours']} # Hours between update checks",
|
||||
f" auto_install: {str(config_dict['updates']['auto_install']).lower()} # Auto-install updates (not recommended)",
|
||||
f" backup_before_update: {str(config_dict['updates']['backup_before_update']).lower()} # Create backup before updating",
|
||||
f" notify_beta_releases: {str(config_dict['updates']['notify_beta_releases']).lower()} # Include beta releases in checks",
|
||||
])
|
||||
|
||||
return '\n'.join(yaml_lines)
|
||||
|
||||
yaml_lines.extend(
|
||||
[
|
||||
"",
|
||||
"# Auto-update system settings",
|
||||
"updates:",
|
||||
f" auto_check: {str(config_dict['updates']['auto_check']).lower()} # Check for updates automatically",
|
||||
f" check_frequency_hours: {config_dict['updates']['check_frequency_hours']} # Hours between update checks",
|
||||
f" auto_install: {str(config_dict['updates']['auto_install']).lower()} # Auto-install updates (not recommended)",
|
||||
f" backup_before_update: {str(config_dict['updates']['backup_before_update']).lower()} # Create backup before updating",
|
||||
f" notify_beta_releases: {str(config_dict['updates']['notify_beta_releases']).lower()} # Include beta releases in checks",
|
||||
]
|
||||
)
|
||||
|
||||
return "\n".join(yaml_lines)
|
||||
|
||||
def update_config(self, **kwargs) -> RAGConfig:
|
||||
"""Update specific configuration values."""
|
||||
config = self.load_config()
|
||||
|
||||
|
||||
for key, value in kwargs.items():
|
||||
if hasattr(config, key):
|
||||
setattr(config, key, value)
|
||||
else:
|
||||
logger.warning(f"Unknown config key: {key}")
|
||||
|
||||
|
||||
self.save_config(config)
|
||||
return config
|
||||
return config
|
||||
|
||||
@ -9,158 +9,169 @@ Perfect for exploring codebases with detailed reasoning and follow-up questions.
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
from typing import List, Dict, Any, Optional
|
||||
from pathlib import Path
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
try:
|
||||
from .config import RAGConfig
|
||||
from .llm_synthesizer import LLMSynthesizer, SynthesisResult
|
||||
from .search import CodeSearcher
|
||||
from .config import RAGConfig
|
||||
from .system_context import get_system_context
|
||||
except ImportError:
|
||||
# For direct testing
|
||||
from config import RAGConfig
|
||||
from llm_synthesizer import LLMSynthesizer, SynthesisResult
|
||||
from search import CodeSearcher
|
||||
from config import RAGConfig
|
||||
get_system_context = lambda x=None: ""
|
||||
|
||||
def get_system_context(x=None):
|
||||
return ""
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ExplorationSession:
|
||||
"""Track an exploration session with context history."""
|
||||
|
||||
project_path: Path
|
||||
conversation_history: List[Dict[str, Any]]
|
||||
session_id: str
|
||||
started_at: float
|
||||
|
||||
def add_exchange(self, question: str, search_results: List[Any], response: SynthesisResult):
|
||||
|
||||
def add_exchange(
|
||||
self, question: str, search_results: List[Any], response: SynthesisResult
|
||||
):
|
||||
"""Add a question/response exchange to the conversation history."""
|
||||
self.conversation_history.append({
|
||||
"timestamp": time.time(),
|
||||
"question": question,
|
||||
"search_results_count": len(search_results),
|
||||
"response": {
|
||||
"summary": response.summary,
|
||||
"key_points": response.key_points,
|
||||
"code_examples": response.code_examples,
|
||||
"suggested_actions": response.suggested_actions,
|
||||
"confidence": response.confidence
|
||||
self.conversation_history.append(
|
||||
{
|
||||
"timestamp": time.time(),
|
||||
"question": question,
|
||||
"search_results_count": len(search_results),
|
||||
"response": {
|
||||
"summary": response.summary,
|
||||
"key_points": response.key_points,
|
||||
"code_examples": response.code_examples,
|
||||
"suggested_actions": response.suggested_actions,
|
||||
"confidence": response.confidence,
|
||||
},
|
||||
}
|
||||
})
|
||||
)
|
||||
|
||||
|
||||
class CodeExplorer:
|
||||
"""Interactive code exploration with thinking and context memory."""
|
||||
|
||||
|
||||
def __init__(self, project_path: Path, config: RAGConfig = None):
|
||||
self.project_path = project_path
|
||||
self.config = config or RAGConfig()
|
||||
|
||||
|
||||
# Initialize components with thinking enabled
|
||||
self.searcher = CodeSearcher(project_path)
|
||||
self.synthesizer = LLMSynthesizer(
|
||||
ollama_url=f"http://{self.config.llm.ollama_host}",
|
||||
model=self.config.llm.synthesis_model,
|
||||
enable_thinking=True, # Always enable thinking in explore mode
|
||||
config=self.config # Pass config for model rankings
|
||||
config=self.config, # Pass config for model rankings
|
||||
)
|
||||
|
||||
|
||||
# Session management
|
||||
self.current_session: Optional[ExplorationSession] = None
|
||||
|
||||
|
||||
def start_exploration_session(self) -> bool:
|
||||
"""Start a new exploration session."""
|
||||
|
||||
|
||||
# Simple availability check - don't do complex model restart logic
|
||||
if not self.synthesizer.is_available():
|
||||
print("❌ LLM service unavailable. Please check Ollama is running.")
|
||||
return False
|
||||
|
||||
|
||||
session_id = f"explore_{int(time.time())}"
|
||||
self.current_session = ExplorationSession(
|
||||
project_path=self.project_path,
|
||||
conversation_history=[],
|
||||
session_id=session_id,
|
||||
started_at=time.time()
|
||||
started_at=time.time(),
|
||||
)
|
||||
|
||||
|
||||
print("🧠 Exploration Mode Started")
|
||||
print(f"Project: {self.project_path.name}")
|
||||
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def explore_question(self, question: str, context_limit: int = 10) -> Optional[str]:
|
||||
"""Explore a question with full thinking and context."""
|
||||
if not self.current_session:
|
||||
return "❌ No exploration session active. Start one first."
|
||||
|
||||
|
||||
# Search for relevant information
|
||||
search_start = time.time()
|
||||
results = self.searcher.search(
|
||||
question,
|
||||
question,
|
||||
top_k=context_limit,
|
||||
include_context=True,
|
||||
semantic_weight=0.7,
|
||||
bm25_weight=0.3
|
||||
bm25_weight=0.3,
|
||||
)
|
||||
search_time = time.time() - search_start
|
||||
|
||||
|
||||
# Build enhanced prompt with conversation context
|
||||
synthesis_prompt = self._build_contextual_prompt(question, results)
|
||||
|
||||
|
||||
# Get thinking-enabled analysis
|
||||
synthesis_start = time.time()
|
||||
synthesis = self._synthesize_with_context(synthesis_prompt, results)
|
||||
synthesis_time = time.time() - synthesis_start
|
||||
|
||||
|
||||
# Add to conversation history
|
||||
self.current_session.add_exchange(question, results, synthesis)
|
||||
|
||||
|
||||
# Streaming already displayed the response
|
||||
# Just return minimal status for caller
|
||||
session_duration = time.time() - self.current_session.started_at
|
||||
exchange_count = len(self.current_session.conversation_history)
|
||||
|
||||
|
||||
status = f"\n📊 Session: {session_duration/60:.1f}m | Question #{exchange_count} | Results: {len(results)} | Time: {search_time+synthesis_time:.1f}s"
|
||||
return status
|
||||
|
||||
|
||||
def _build_contextual_prompt(self, question: str, results: List[Any]) -> str:
|
||||
"""Build a prompt that includes conversation context."""
|
||||
# Get recent conversation context (last 3 exchanges)
|
||||
context_summary = ""
|
||||
if self.current_session.conversation_history:
|
||||
recent_exchanges = self.current_session.conversation_history[-3:]
|
||||
context_parts = []
|
||||
|
||||
|
||||
for i, exchange in enumerate(recent_exchanges, 1):
|
||||
prev_q = exchange["question"]
|
||||
prev_summary = exchange["response"]["summary"]
|
||||
context_parts.append(f"Previous Q{i}: {prev_q}")
|
||||
context_parts.append(f"Previous A{i}: {prev_summary}")
|
||||
|
||||
context_summary = "\n".join(context_parts)
|
||||
|
||||
|
||||
# "\n".join(context_parts) # Unused variable removed
|
||||
|
||||
# Build search results context
|
||||
results_context = []
|
||||
for i, result in enumerate(results[:8], 1):
|
||||
file_path = result.file_path if hasattr(result, 'file_path') else 'unknown'
|
||||
content = result.content if hasattr(result, 'content') else str(result)
|
||||
score = result.score if hasattr(result, 'score') else 0.0
|
||||
|
||||
results_context.append(f"""
|
||||
# result.file_path if hasattr(result, "file_path") else "unknown" # Unused variable removed
|
||||
# result.content if hasattr(result, "content") else str(result) # Unused variable removed
|
||||
# result.score if hasattr(result, "score") else 0.0 # Unused variable removed
|
||||
|
||||
results_context.append(
|
||||
"""
|
||||
Result {i} (Score: {score:.3f}):
|
||||
File: {file_path}
|
||||
Content: {content[:800]}{'...' if len(content) > 800 else ''}
|
||||
""")
|
||||
|
||||
results_text = "\n".join(results_context)
|
||||
|
||||
"""
|
||||
)
|
||||
|
||||
# "\n".join(results_context) # Unused variable removed
|
||||
|
||||
# Get system context for better responses
|
||||
system_context = get_system_context(self.project_path)
|
||||
|
||||
# get_system_context(self.project_path) # Unused variable removed
|
||||
|
||||
# Create comprehensive exploration prompt with thinking
|
||||
prompt = f"""<think>
|
||||
prompt = """<think>
|
||||
The user asked: "{question}"
|
||||
|
||||
System context: {system_context}
|
||||
@ -197,7 +208,7 @@ Please provide a helpful, natural explanation that answers their question. Write
|
||||
|
||||
Structure your response to include:
|
||||
1. A clear explanation of what you found and how it answers their question
|
||||
2. The most important insights from the information you discovered
|
||||
2. The most important insights from the information you discovered
|
||||
3. Relevant examples or code patterns when helpful
|
||||
4. Practical next steps they could take
|
||||
|
||||
@ -210,37 +221,43 @@ Guidelines:
|
||||
- Use natural language, not structured formats
|
||||
- Break complex topics into understandable pieces
|
||||
"""
|
||||
|
||||
|
||||
return prompt
|
||||
|
||||
|
||||
def _synthesize_with_context(self, prompt: str, results: List[Any]) -> SynthesisResult:
|
||||
"""Synthesize results with full context and thinking."""
|
||||
try:
|
||||
# Use streaming with thinking visible (don't collapse)
|
||||
response = self.synthesizer._call_ollama(prompt, temperature=0.2, disable_thinking=False, use_streaming=True, collapse_thinking=False)
|
||||
thinking_stream = ""
|
||||
|
||||
response = self.synthesizer._call_ollama(
|
||||
prompt,
|
||||
temperature=0.2,
|
||||
disable_thinking=False,
|
||||
use_streaming=True,
|
||||
collapse_thinking=False,
|
||||
)
|
||||
# "" # Unused variable removed
|
||||
|
||||
# Streaming already shows thinking and response
|
||||
# No need for additional indicators
|
||||
|
||||
|
||||
if not response:
|
||||
return SynthesisResult(
|
||||
summary="Analysis unavailable (LLM service error)",
|
||||
key_points=[],
|
||||
code_examples=[],
|
||||
suggested_actions=["Check LLM service status"],
|
||||
confidence=0.0
|
||||
confidence=0.0,
|
||||
)
|
||||
|
||||
|
||||
# Use natural language response directly
|
||||
return SynthesisResult(
|
||||
summary=response.strip(),
|
||||
key_points=[], # Not used with natural language responses
|
||||
code_examples=[], # Not used with natural language responses
|
||||
suggested_actions=[], # Not used with natural language responses
|
||||
confidence=0.85 # High confidence for natural responses
|
||||
confidence=0.85, # High confidence for natural responses
|
||||
)
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Context synthesis failed: {e}")
|
||||
return SynthesisResult(
|
||||
@ -248,124 +265,153 @@ Guidelines:
|
||||
key_points=[],
|
||||
code_examples=[],
|
||||
suggested_actions=["Check system status and try again"],
|
||||
confidence=0.0
|
||||
confidence=0.0,
|
||||
)
|
||||
|
||||
def _format_exploration_response(self, question: str, synthesis: SynthesisResult,
|
||||
result_count: int, search_time: float, synthesis_time: float) -> str:
|
||||
|
||||
def _format_exploration_response(
|
||||
self,
|
||||
question: str,
|
||||
synthesis: SynthesisResult,
|
||||
result_count: int,
|
||||
search_time: float,
|
||||
synthesis_time: float,
|
||||
) -> str:
|
||||
"""Format exploration response with context indicators."""
|
||||
|
||||
|
||||
output = []
|
||||
|
||||
|
||||
# Header with session context
|
||||
session_duration = time.time() - self.current_session.started_at
|
||||
exchange_count = len(self.current_session.conversation_history)
|
||||
|
||||
|
||||
output.append(f"🧠 EXPLORATION ANALYSIS (Question #{exchange_count})")
|
||||
output.append(f"Session: {session_duration/60:.1f}m | Results: {result_count} | "
|
||||
f"Time: {search_time+synthesis_time:.1f}s")
|
||||
output.append(
|
||||
f"Session: {session_duration/60:.1f}m | Results: {result_count} | "
|
||||
f"Time: {search_time+synthesis_time:.1f}s"
|
||||
)
|
||||
output.append("=" * 60)
|
||||
output.append("")
|
||||
|
||||
|
||||
# Response was already displayed via streaming
|
||||
# Just show completion status
|
||||
output.append("✅ Analysis complete")
|
||||
output.append("")
|
||||
output.append("")
|
||||
|
||||
|
||||
# Confidence and context indicator
|
||||
confidence_emoji = "🟢" if synthesis.confidence > 0.7 else "🟡" if synthesis.confidence > 0.4 else "🔴"
|
||||
context_indicator = f" | Context: {exchange_count-1} previous questions" if exchange_count > 1 else ""
|
||||
output.append(f"{confidence_emoji} Confidence: {synthesis.confidence:.1%}{context_indicator}")
|
||||
|
||||
confidence_emoji = (
|
||||
"🟢"
|
||||
if synthesis.confidence > 0.7
|
||||
else "🟡" if synthesis.confidence > 0.4 else "🔴"
|
||||
)
|
||||
context_indicator = (
|
||||
f" | Context: {exchange_count-1} previous questions" if exchange_count > 1 else ""
|
||||
)
|
||||
output.append(
|
||||
f"{confidence_emoji} Confidence: {synthesis.confidence:.1%}{context_indicator}"
|
||||
)
|
||||
|
||||
return "\n".join(output)
|
||||
|
||||
|
||||
def get_session_summary(self) -> str:
|
||||
"""Get a summary of the current exploration session."""
|
||||
if not self.current_session:
|
||||
return "No active exploration session."
|
||||
|
||||
|
||||
duration = time.time() - self.current_session.started_at
|
||||
exchange_count = len(self.current_session.conversation_history)
|
||||
|
||||
|
||||
summary = [
|
||||
f"🧠 EXPLORATION SESSION SUMMARY",
|
||||
f"=" * 40,
|
||||
"🧠 EXPLORATION SESSION SUMMARY",
|
||||
"=" * 40,
|
||||
f"Project: {self.project_path.name}",
|
||||
f"Session ID: {self.current_session.session_id}",
|
||||
f"Duration: {duration/60:.1f} minutes",
|
||||
f"Questions explored: {exchange_count}",
|
||||
f"",
|
||||
"",
|
||||
]
|
||||
|
||||
|
||||
if exchange_count > 0:
|
||||
summary.append("📋 Topics explored:")
|
||||
for i, exchange in enumerate(self.current_session.conversation_history, 1):
|
||||
question = exchange["question"][:50] + "..." if len(exchange["question"]) > 50 else exchange["question"]
|
||||
question = (
|
||||
exchange["question"][:50] + "..."
|
||||
if len(exchange["question"]) > 50
|
||||
else exchange["question"]
|
||||
)
|
||||
confidence = exchange["response"]["confidence"]
|
||||
summary.append(f" {i}. {question} (confidence: {confidence:.1%})")
|
||||
|
||||
|
||||
return "\n".join(summary)
|
||||
|
||||
|
||||
def end_session(self) -> str:
|
||||
"""End the current exploration session."""
|
||||
if not self.current_session:
|
||||
return "No active session to end."
|
||||
|
||||
|
||||
summary = self.get_session_summary()
|
||||
self.current_session = None
|
||||
|
||||
|
||||
return summary + "\n\n✅ Exploration session ended."
|
||||
|
||||
|
||||
def _check_model_restart_needed(self) -> bool:
|
||||
"""Check if model restart would improve thinking quality."""
|
||||
try:
|
||||
# Simple heuristic: if we can detect the model was recently used
|
||||
# Simple heuristic: if we can detect the model was recently used
|
||||
# with <no_think>, suggest restart for better thinking quality
|
||||
|
||||
|
||||
# Test with a simple thinking prompt to see response quality
|
||||
test_response = self.synthesizer._call_ollama(
|
||||
"Think briefly: what is 2+2?",
|
||||
temperature=0.1,
|
||||
disable_thinking=False
|
||||
"Think briefly: what is 2+2?", temperature=0.1, disable_thinking=False
|
||||
)
|
||||
|
||||
|
||||
if test_response:
|
||||
# If response is suspiciously short or shows signs of no-think behavior
|
||||
if len(test_response.strip()) < 10 or "4" == test_response.strip():
|
||||
return True
|
||||
|
||||
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def _handle_model_restart(self) -> bool:
|
||||
"""Handle user confirmation and model restart."""
|
||||
try:
|
||||
print("\n🤔 To ensure best thinking quality, exploration mode works best with a fresh model.")
|
||||
print(
|
||||
"\n🤔 To ensure best thinking quality, exploration mode works best with a fresh model."
|
||||
)
|
||||
print(f" Currently running: {self.synthesizer.model}")
|
||||
print("\n💡 Stop current model and restart for optimal exploration? (y/N): ", end="", flush=True)
|
||||
|
||||
print(
|
||||
"\n💡 Stop current model and restart for optimal exploration? (y/N): ",
|
||||
end="",
|
||||
flush=True,
|
||||
)
|
||||
|
||||
response = input().strip().lower()
|
||||
|
||||
if response in ['y', 'yes']:
|
||||
|
||||
if response in ["y", "yes"]:
|
||||
print("\n🔄 Stopping current model...")
|
||||
|
||||
|
||||
# Use ollama stop command for clean model restart
|
||||
import subprocess
|
||||
|
||||
try:
|
||||
subprocess.run([
|
||||
"ollama", "stop", self.synthesizer.model
|
||||
], timeout=10, capture_output=True)
|
||||
|
||||
subprocess.run(
|
||||
["ollama", "stop", self.synthesizer.model],
|
||||
timeout=10,
|
||||
capture_output=True,
|
||||
)
|
||||
|
||||
print("✅ Model stopped successfully.")
|
||||
print("🚀 Exploration mode will restart the model with thinking enabled...")
|
||||
|
||||
print(
|
||||
"🚀 Exploration mode will restart the model with thinking enabled..."
|
||||
)
|
||||
|
||||
# Reset synthesizer initialization to force fresh start
|
||||
self.synthesizer._initialized = False
|
||||
return True
|
||||
|
||||
|
||||
except subprocess.TimeoutExpired:
|
||||
print("⚠️ Model stop timed out, continuing anyway...")
|
||||
return False
|
||||
@ -378,19 +424,18 @@ Guidelines:
|
||||
else:
|
||||
print("📝 Continuing with current model...")
|
||||
return False
|
||||
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\n📝 Continuing with current model...")
|
||||
return False
|
||||
except EOFError:
|
||||
print("\n📝 Continuing with current model...")
|
||||
return False
|
||||
|
||||
|
||||
def _call_ollama_with_thinking(self, prompt: str, temperature: float = 0.3) -> tuple:
|
||||
"""Call Ollama with streaming for fast time-to-first-token."""
|
||||
import requests
|
||||
import json
|
||||
|
||||
|
||||
try:
|
||||
# Use the synthesizer's model and connection
|
||||
model_to_use = self.synthesizer.model
|
||||
@ -399,14 +444,15 @@ Guidelines:
|
||||
model_to_use = self.synthesizer.available_models[0]
|
||||
else:
|
||||
return None, None
|
||||
|
||||
|
||||
# Enable thinking by NOT adding <no_think>
|
||||
final_prompt = prompt
|
||||
|
||||
|
||||
# Get optimal parameters for this model
|
||||
from .llm_optimization import get_optimal_ollama_parameters
|
||||
|
||||
optimal_params = get_optimal_ollama_parameters(model_to_use)
|
||||
|
||||
|
||||
payload = {
|
||||
"model": model_to_use,
|
||||
"prompt": final_prompt,
|
||||
@ -418,94 +464,102 @@ Guidelines:
|
||||
"num_ctx": self.synthesizer._get_optimal_context_size(model_to_use),
|
||||
"num_predict": optimal_params.get("num_predict", 2000),
|
||||
"repeat_penalty": optimal_params.get("repeat_penalty", 1.1),
|
||||
"presence_penalty": optimal_params.get("presence_penalty", 1.0)
|
||||
}
|
||||
"presence_penalty": optimal_params.get("presence_penalty", 1.0),
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
response = requests.post(
|
||||
f"{self.synthesizer.ollama_url}/api/generate",
|
||||
json=payload,
|
||||
stream=True,
|
||||
timeout=65
|
||||
timeout=65,
|
||||
)
|
||||
|
||||
|
||||
if response.status_code == 200:
|
||||
# Collect streaming response
|
||||
raw_response = ""
|
||||
thinking_displayed = False
|
||||
|
||||
|
||||
for line in response.iter_lines():
|
||||
if line:
|
||||
try:
|
||||
chunk_data = json.loads(line.decode('utf-8'))
|
||||
chunk_text = chunk_data.get('response', '')
|
||||
|
||||
chunk_data = json.loads(line.decode("utf-8"))
|
||||
chunk_text = chunk_data.get("response", "")
|
||||
|
||||
if chunk_text:
|
||||
raw_response += chunk_text
|
||||
|
||||
|
||||
# Display thinking stream as it comes in
|
||||
if not thinking_displayed and '<think>' in raw_response:
|
||||
if not thinking_displayed and "<think>" in raw_response:
|
||||
# Start displaying thinking
|
||||
self._start_thinking_display()
|
||||
thinking_displayed = True
|
||||
|
||||
|
||||
if thinking_displayed:
|
||||
self._stream_thinking_chunk(chunk_text)
|
||||
|
||||
if chunk_data.get('done', False):
|
||||
|
||||
if chunk_data.get("done", False):
|
||||
break
|
||||
|
||||
|
||||
except json.JSONDecodeError:
|
||||
continue
|
||||
|
||||
|
||||
# Finish thinking display if it was shown
|
||||
if thinking_displayed:
|
||||
self._end_thinking_display()
|
||||
|
||||
|
||||
# Extract thinking stream and final response
|
||||
thinking_stream, final_response = self._extract_thinking(raw_response)
|
||||
|
||||
|
||||
return final_response, thinking_stream
|
||||
else:
|
||||
return None, None
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Thinking-enabled Ollama call failed: {e}")
|
||||
return None, None
|
||||
|
||||
|
||||
def _extract_thinking(self, raw_response: str) -> tuple:
|
||||
"""Extract thinking content from response."""
|
||||
thinking_stream = ""
|
||||
final_response = raw_response
|
||||
|
||||
|
||||
# Look for thinking patterns
|
||||
if "<think>" in raw_response and "</think>" in raw_response:
|
||||
# Extract thinking content between tags
|
||||
start_tag = raw_response.find("<think>")
|
||||
end_tag = raw_response.find("</think>") + len("</think>")
|
||||
|
||||
|
||||
if start_tag != -1 and end_tag != -1:
|
||||
thinking_content = raw_response[start_tag + 7:end_tag - 8] # Remove tags
|
||||
thinking_content = raw_response[start_tag + 7 : end_tag - 8] # Remove tags
|
||||
thinking_stream = thinking_content.strip()
|
||||
|
||||
|
||||
# Remove thinking from final response
|
||||
final_response = (raw_response[:start_tag] + raw_response[end_tag:]).strip()
|
||||
|
||||
|
||||
# Alternative patterns for models that use different thinking formats
|
||||
elif "Let me think" in raw_response or "I need to analyze" in raw_response:
|
||||
# Simple heuristic: first paragraph might be thinking
|
||||
lines = raw_response.split('\n')
|
||||
lines = raw_response.split("\n")
|
||||
potential_thinking = []
|
||||
final_lines = []
|
||||
|
||||
thinking_indicators = ["Let me think", "I need to", "First, I'll", "Looking at", "Analyzing"]
|
||||
|
||||
thinking_indicators = [
|
||||
"Let me think",
|
||||
"I need to",
|
||||
"First, I'll",
|
||||
"Looking at",
|
||||
"Analyzing",
|
||||
]
|
||||
in_thinking = False
|
||||
|
||||
|
||||
for line in lines:
|
||||
if any(indicator in line for indicator in thinking_indicators):
|
||||
in_thinking = True
|
||||
potential_thinking.append(line)
|
||||
elif in_thinking and (line.startswith('{') or line.startswith('**') or line.startswith('#')):
|
||||
elif in_thinking and (
|
||||
line.startswith("{") or line.startswith("**") or line.startswith("#")
|
||||
):
|
||||
# Likely end of thinking, start of structured response
|
||||
in_thinking = False
|
||||
final_lines.append(line)
|
||||
@ -513,84 +567,87 @@ Guidelines:
|
||||
potential_thinking.append(line)
|
||||
else:
|
||||
final_lines.append(line)
|
||||
|
||||
|
||||
if potential_thinking:
|
||||
thinking_stream = '\n'.join(potential_thinking).strip()
|
||||
final_response = '\n'.join(final_lines).strip()
|
||||
|
||||
thinking_stream = "\n".join(potential_thinking).strip()
|
||||
final_response = "\n".join(final_lines).strip()
|
||||
|
||||
return thinking_stream, final_response
|
||||
|
||||
|
||||
def _start_thinking_display(self):
|
||||
"""Start the thinking stream display."""
|
||||
print("\n\033[2m\033[3m💭 AI Thinking:\033[0m")
|
||||
print("\033[2m\033[3m" + "─" * 40 + "\033[0m")
|
||||
self._thinking_buffer = ""
|
||||
self._in_thinking_tags = False
|
||||
|
||||
|
||||
def _stream_thinking_chunk(self, chunk: str):
|
||||
"""Stream a chunk of thinking as it arrives."""
|
||||
import sys
|
||||
|
||||
|
||||
self._thinking_buffer += chunk
|
||||
|
||||
|
||||
# Check if we're in thinking tags
|
||||
if '<think>' in self._thinking_buffer and not self._in_thinking_tags:
|
||||
if "<think>" in self._thinking_buffer and not self._in_thinking_tags:
|
||||
self._in_thinking_tags = True
|
||||
# Display everything after <think>
|
||||
start_idx = self._thinking_buffer.find('<think>') + 7
|
||||
start_idx = self._thinking_buffer.find("<think>") + 7
|
||||
thinking_content = self._thinking_buffer[start_idx:]
|
||||
if thinking_content:
|
||||
print(f"\033[2m\033[3m{thinking_content}\033[0m", end='', flush=True)
|
||||
elif self._in_thinking_tags and '</think>' not in chunk:
|
||||
print(f"\033[2m\033[3m{thinking_content}\033[0m", end="", flush=True)
|
||||
elif self._in_thinking_tags and "</think>" not in chunk:
|
||||
# We're in thinking mode, display the chunk
|
||||
print(f"\033[2m\033[3m{chunk}\033[0m", end='', flush=True)
|
||||
elif '</think>' in self._thinking_buffer:
|
||||
print(f"\033[2m\033[3m{chunk}\033[0m", end="", flush=True)
|
||||
elif "</think>" in self._thinking_buffer:
|
||||
# End of thinking
|
||||
self._in_thinking_tags = False
|
||||
|
||||
|
||||
def _end_thinking_display(self):
|
||||
"""End the thinking stream display."""
|
||||
print(f"\n\033[2m\033[3m" + "─" * 40 + "\033[0m")
|
||||
print("\n\033[2m\033[3m" + "─" * 40 + "\033[0m")
|
||||
print()
|
||||
|
||||
|
||||
def _display_thinking_stream(self, thinking_stream: str):
|
||||
"""Display thinking stream in light gray and italic (fallback for non-streaming)."""
|
||||
if not thinking_stream:
|
||||
return
|
||||
|
||||
|
||||
print("\n\033[2m\033[3m💭 AI Thinking:\033[0m")
|
||||
print("\033[2m\033[3m" + "─" * 40 + "\033[0m")
|
||||
|
||||
|
||||
# Split into paragraphs and display with proper formatting
|
||||
paragraphs = thinking_stream.split('\n\n')
|
||||
paragraphs = thinking_stream.split("\n\n")
|
||||
for para in paragraphs:
|
||||
if para.strip():
|
||||
# Wrap long lines nicely
|
||||
lines = para.strip().split('\n')
|
||||
lines = para.strip().split("\n")
|
||||
for line in lines:
|
||||
if line.strip():
|
||||
# Light gray and italic
|
||||
print(f"\033[2m\033[3m{line}\033[0m")
|
||||
print() # Paragraph spacing
|
||||
|
||||
|
||||
print("\033[2m\033[3m" + "─" * 40 + "\033[0m")
|
||||
print()
|
||||
|
||||
|
||||
# Quick test function
|
||||
|
||||
|
||||
def test_explorer():
|
||||
"""Test the code explorer."""
|
||||
explorer = CodeExplorer(Path("."))
|
||||
|
||||
|
||||
if not explorer.start_exploration_session():
|
||||
print("❌ Could not start exploration session")
|
||||
return
|
||||
|
||||
|
||||
# Test question
|
||||
response = explorer.explore_question("How does authentication work in this codebase?")
|
||||
if response:
|
||||
print(response)
|
||||
|
||||
|
||||
print("\n" + explorer.end_session())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_explorer()
|
||||
test_explorer()
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -6,163 +6,173 @@ Provides runaway prevention, context management, and intelligent detection
|
||||
of problematic model behaviors to ensure reliable user experience.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import re
|
||||
import time
|
||||
import logging
|
||||
from typing import Optional, Dict, List, Tuple
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class SafeguardConfig:
|
||||
"""Configuration for LLM safeguards - gentle and educational."""
|
||||
max_output_tokens: int = 4000 # Allow longer responses for learning
|
||||
max_repetition_ratio: float = 0.7 # Be very permissive - only catch extreme repetition
|
||||
max_response_time: int = 120 # Allow 2 minutes for complex thinking
|
||||
min_useful_length: int = 10 # Lower threshold - short answers can be useful
|
||||
context_window: int = 32000 # Match Qwen3 context length (32K token limit)
|
||||
|
||||
max_output_tokens: int = 4000 # Allow longer responses for learning
|
||||
max_repetition_ratio: float = 0.7 # Be very permissive - only catch extreme repetition
|
||||
max_response_time: int = 120 # Allow 2 minutes for complex thinking
|
||||
min_useful_length: int = 10 # Lower threshold - short answers can be useful
|
||||
context_window: int = 32000 # Match Qwen3 context length (32K token limit)
|
||||
enable_thinking_detection: bool = True # Detect thinking patterns
|
||||
|
||||
|
||||
|
||||
class ModelRunawayDetector:
|
||||
"""Detects and prevents model runaway behaviors."""
|
||||
|
||||
|
||||
def __init__(self, config: SafeguardConfig = None):
|
||||
self.config = config or SafeguardConfig()
|
||||
self.response_patterns = self._compile_patterns()
|
||||
|
||||
|
||||
def _compile_patterns(self) -> Dict[str, re.Pattern]:
|
||||
"""Compile regex patterns for runaway detection."""
|
||||
return {
|
||||
# Excessive repetition patterns
|
||||
'word_repetition': re.compile(r'\b(\w+)\b(?:\s+\1\b){3,}', re.IGNORECASE),
|
||||
'phrase_repetition': re.compile(r'(.{10,50}?)\1{2,}', re.DOTALL),
|
||||
|
||||
"word_repetition": re.compile(r"\b(\w+)\b(?:\s+\1\b){3,}", re.IGNORECASE),
|
||||
"phrase_repetition": re.compile(r"(.{10,50}?)\1{2,}", re.DOTALL),
|
||||
# Thinking loop patterns (small models get stuck)
|
||||
'thinking_loop': re.compile(r'(let me think|i think|thinking|consider|actually|wait|hmm|well)\s*[.,:]*\s*\1', re.IGNORECASE),
|
||||
|
||||
"thinking_loop": re.compile(
|
||||
r"(let me think|i think|thinking|consider|actually|wait|hmm|well)\s*[.,:]*\s*\1",
|
||||
re.IGNORECASE,
|
||||
),
|
||||
# Rambling patterns
|
||||
'excessive_filler': re.compile(r'\b(um|uh|well|you know|like|basically|actually|so|then|and|but|however)\b(?:\s+[^.!?]*){5,}', re.IGNORECASE),
|
||||
|
||||
"excessive_filler": re.compile(
|
||||
r"\b(um|uh|well|you know|like|basically|actually|so|then|and|but|however)\b(?:\s+[^.!?]*){5,}",
|
||||
re.IGNORECASE,
|
||||
),
|
||||
# JSON corruption patterns
|
||||
'broken_json': re.compile(r'\{[^}]*\{[^}]*\{'), # Nested broken JSON
|
||||
'json_repetition': re.compile(r'("[\w_]+"\s*:\s*"[^"]*",?\s*){4,}'), # Repeated JSON fields
|
||||
"broken_json": re.compile(r"\{[^}]*\{[^}]*\{"), # Nested broken JSON
|
||||
"json_repetition": re.compile(
|
||||
r'("[\w_]+"\s*:\s*"[^"]*",?\s*){4,}'
|
||||
), # Repeated JSON fields
|
||||
}
|
||||
|
||||
def check_response_quality(self, response: str, query: str, start_time: float) -> Tuple[bool, Optional[str], Optional[str]]:
|
||||
|
||||
def check_response_quality(
|
||||
self, response: str, query: str, start_time: float
|
||||
) -> Tuple[bool, Optional[str], Optional[str]]:
|
||||
"""
|
||||
Check response quality and detect runaway behaviors.
|
||||
|
||||
|
||||
Returns:
|
||||
(is_valid, issue_type, user_explanation)
|
||||
"""
|
||||
if not response or len(response.strip()) < self.config.min_useful_length:
|
||||
return False, "too_short", self._explain_too_short()
|
||||
|
||||
|
||||
# Check response time
|
||||
elapsed = time.time() - start_time
|
||||
if elapsed > self.config.max_response_time:
|
||||
return False, "timeout", self._explain_timeout()
|
||||
|
||||
|
||||
# Check for repetition issues
|
||||
repetition_issue = self._check_repetition(response)
|
||||
if repetition_issue:
|
||||
return False, repetition_issue, self._explain_repetition(repetition_issue)
|
||||
|
||||
|
||||
# Check for thinking loops
|
||||
if self.config.enable_thinking_detection:
|
||||
thinking_issue = self._check_thinking_loops(response)
|
||||
if thinking_issue:
|
||||
return False, thinking_issue, self._explain_thinking_loop()
|
||||
|
||||
|
||||
# Check for rambling
|
||||
rambling_issue = self._check_rambling(response)
|
||||
if rambling_issue:
|
||||
return False, rambling_issue, self._explain_rambling()
|
||||
|
||||
|
||||
# Check JSON corruption (for structured responses)
|
||||
if '{' in response and '}' in response:
|
||||
if "{" in response and "}" in response:
|
||||
json_issue = self._check_json_corruption(response)
|
||||
if json_issue:
|
||||
return False, json_issue, self._explain_json_corruption()
|
||||
|
||||
|
||||
return True, None, None
|
||||
|
||||
|
||||
def _check_repetition(self, response: str) -> Optional[str]:
|
||||
"""Check for excessive repetition."""
|
||||
# Word repetition
|
||||
if self.response_patterns['word_repetition'].search(response):
|
||||
if self.response_patterns["word_repetition"].search(response):
|
||||
return "word_repetition"
|
||||
|
||||
# Phrase repetition
|
||||
if self.response_patterns['phrase_repetition'].search(response):
|
||||
|
||||
# Phrase repetition
|
||||
if self.response_patterns["phrase_repetition"].search(response):
|
||||
return "phrase_repetition"
|
||||
|
||||
|
||||
# Calculate repetition ratio (excluding Qwen3 thinking blocks)
|
||||
analysis_text = response
|
||||
if "<think>" in response and "</think>" in response:
|
||||
# Extract only the actual response (after thinking) for repetition analysis
|
||||
thinking_end = response.find("</think>")
|
||||
if thinking_end != -1:
|
||||
analysis_text = response[thinking_end + 8:].strip()
|
||||
|
||||
analysis_text = response[thinking_end + 8 :].strip()
|
||||
|
||||
# If the actual response (excluding thinking) is short, don't penalize
|
||||
if len(analysis_text.split()) < 20:
|
||||
return None
|
||||
|
||||
|
||||
words = analysis_text.split()
|
||||
if len(words) > 10:
|
||||
unique_words = set(words)
|
||||
repetition_ratio = 1 - (len(unique_words) / len(words))
|
||||
if repetition_ratio > self.config.max_repetition_ratio:
|
||||
return "high_repetition_ratio"
|
||||
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def _check_thinking_loops(self, response: str) -> Optional[str]:
|
||||
"""Check for thinking loops (common in small models)."""
|
||||
if self.response_patterns['thinking_loop'].search(response):
|
||||
if self.response_patterns["thinking_loop"].search(response):
|
||||
return "thinking_loop"
|
||||
|
||||
|
||||
# Check for excessive meta-commentary
|
||||
thinking_words = ['think', 'considering', 'actually', 'wait', 'hmm', 'let me']
|
||||
thinking_words = ["think", "considering", "actually", "wait", "hmm", "let me"]
|
||||
thinking_count = sum(response.lower().count(word) for word in thinking_words)
|
||||
|
||||
|
||||
if thinking_count > 5 and len(response.split()) < 200:
|
||||
return "excessive_thinking"
|
||||
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def _check_rambling(self, response: str) -> Optional[str]:
|
||||
"""Check for rambling or excessive filler."""
|
||||
if self.response_patterns['excessive_filler'].search(response):
|
||||
if self.response_patterns["excessive_filler"].search(response):
|
||||
return "excessive_filler"
|
||||
|
||||
|
||||
# Check for extremely long sentences (sign of rambling)
|
||||
sentences = re.split(r'[.!?]+', response)
|
||||
sentences = re.split(r"[.!?]+", response)
|
||||
long_sentences = [s for s in sentences if len(s.split()) > 50]
|
||||
|
||||
|
||||
if len(long_sentences) > 2:
|
||||
return "excessive_rambling"
|
||||
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def _check_json_corruption(self, response: str) -> Optional[str]:
|
||||
"""Check for JSON corruption in structured responses."""
|
||||
if self.response_patterns['broken_json'].search(response):
|
||||
if self.response_patterns["broken_json"].search(response):
|
||||
return "broken_json"
|
||||
|
||||
if self.response_patterns['json_repetition'].search(response):
|
||||
|
||||
if self.response_patterns["json_repetition"].search(response):
|
||||
return "json_repetition"
|
||||
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def _explain_too_short(self) -> str:
|
||||
return """🤔 The AI response was too short to be helpful.
|
||||
|
||||
**Why this happens:**
|
||||
• The model might be confused by the query
|
||||
• Context might be insufficient
|
||||
• Context might be insufficient
|
||||
• Model might be overloaded
|
||||
|
||||
**What to try:**
|
||||
@ -180,11 +190,11 @@ class ModelRunawayDetector:
|
||||
|
||||
**What to try:**
|
||||
• Try a simpler, more direct question
|
||||
• Use synthesis mode for faster responses: `--synthesize`
|
||||
• Use synthesis mode for faster responses: `--synthesize`
|
||||
• Consider using a larger model if available"""
|
||||
|
||||
def _explain_repetition(self, issue_type: str) -> str:
|
||||
return f"""🔄 The AI got stuck in repetition loops ({issue_type}).
|
||||
return """🔄 The AI got stuck in repetition loops ({issue_type}).
|
||||
|
||||
**Why this happens:**
|
||||
• Small models sometimes repeat when uncertain
|
||||
@ -216,7 +226,7 @@ class ModelRunawayDetector:
|
||||
|
||||
**Why this happens:**
|
||||
• Small models sometimes lose focus on complex topics
|
||||
• Query might be too broad or vague
|
||||
• Query might be too broad or vague
|
||||
• Model trying to cover too much at once
|
||||
|
||||
**What to try:**
|
||||
@ -233,7 +243,7 @@ class ModelRunawayDetector:
|
||||
• Context limits can cause format errors
|
||||
• Complex analysis might overwhelm formatting
|
||||
|
||||
**What to try:**
|
||||
**What to try:**
|
||||
• Try the question again (often resolves itself)
|
||||
• Use simpler questions for better formatting
|
||||
• Synthesis mode sometimes gives cleaner output
|
||||
@ -242,90 +252,109 @@ class ModelRunawayDetector:
|
||||
def get_recovery_suggestions(self, issue_type: str, query: str) -> List[str]:
|
||||
"""Get specific recovery suggestions based on the issue."""
|
||||
suggestions = []
|
||||
|
||||
if issue_type in ['thinking_loop', 'excessive_thinking']:
|
||||
suggestions.extend([
|
||||
f"Try synthesis mode: `rag-mini search . \"{query}\" --synthesize`",
|
||||
"Ask more direct questions without 'why' or 'how'",
|
||||
"Break complex questions into smaller parts"
|
||||
])
|
||||
|
||||
elif issue_type in ['word_repetition', 'phrase_repetition', 'high_repetition_ratio']:
|
||||
suggestions.extend([
|
||||
"Try rephrasing your question completely",
|
||||
"Use more specific technical terms",
|
||||
f"Try exploration mode: `rag-mini explore .`"
|
||||
])
|
||||
|
||||
elif issue_type == 'timeout':
|
||||
suggestions.extend([
|
||||
"Try a simpler version of your question",
|
||||
"Use synthesis mode for faster responses",
|
||||
"Check if Ollama is under heavy load"
|
||||
])
|
||||
|
||||
|
||||
if issue_type in ["thinking_loop", "excessive_thinking"]:
|
||||
suggestions.extend(
|
||||
[
|
||||
f'Try synthesis mode: `rag-mini search . "{query}" --synthesize`',
|
||||
"Ask more direct questions without 'why' or 'how'",
|
||||
"Break complex questions into smaller parts",
|
||||
]
|
||||
)
|
||||
|
||||
elif issue_type in [
|
||||
"word_repetition",
|
||||
"phrase_repetition",
|
||||
"high_repetition_ratio",
|
||||
]:
|
||||
suggestions.extend(
|
||||
[
|
||||
"Try rephrasing your question completely",
|
||||
"Use more specific technical terms",
|
||||
"Try exploration mode: `rag-mini explore .`",
|
||||
]
|
||||
)
|
||||
|
||||
elif issue_type == "timeout":
|
||||
suggestions.extend(
|
||||
[
|
||||
"Try a simpler version of your question",
|
||||
"Use synthesis mode for faster responses",
|
||||
"Check if Ollama is under heavy load",
|
||||
]
|
||||
)
|
||||
|
||||
# Universal suggestions
|
||||
suggestions.extend([
|
||||
"Consider using a larger model if available (qwen3:1.7b or qwen3:4b)",
|
||||
"Check model status: `ollama list`"
|
||||
])
|
||||
|
||||
suggestions.extend(
|
||||
[
|
||||
"Consider using a larger model if available (qwen3:1.7b or qwen3:4b)",
|
||||
"Check model status: `ollama list`",
|
||||
]
|
||||
)
|
||||
|
||||
return suggestions
|
||||
|
||||
|
||||
def get_optimal_ollama_parameters(model_name: str) -> Dict[str, any]:
|
||||
"""Get optimal parameters for different Ollama models."""
|
||||
|
||||
|
||||
base_params = {
|
||||
"num_ctx": 32768, # Good context window for most uses
|
||||
"num_predict": 2000, # Reasonable response length
|
||||
"temperature": 0.3, # Balanced creativity/consistency
|
||||
"num_ctx": 32768, # Good context window for most uses
|
||||
"num_predict": 2000, # Reasonable response length
|
||||
"temperature": 0.3, # Balanced creativity/consistency
|
||||
}
|
||||
|
||||
|
||||
# Model-specific optimizations
|
||||
if "qwen3:0.6b" in model_name.lower():
|
||||
return {
|
||||
**base_params,
|
||||
"repeat_penalty": 1.15, # Prevent repetition in small model
|
||||
"presence_penalty": 1.5, # Suppress repetitive outputs
|
||||
"top_p": 0.8, # Focused sampling
|
||||
"top_k": 20, # Limit choices
|
||||
"num_predict": 1500, # Shorter responses for reliability
|
||||
"repeat_penalty": 1.15, # Prevent repetition in small model
|
||||
"presence_penalty": 1.5, # Suppress repetitive outputs
|
||||
"top_p": 0.8, # Focused sampling
|
||||
"top_k": 20, # Limit choices
|
||||
"num_predict": 1500, # Shorter responses for reliability
|
||||
}
|
||||
|
||||
|
||||
elif "qwen3:1.7b" in model_name.lower():
|
||||
return {
|
||||
**base_params,
|
||||
"repeat_penalty": 1.1, # Less aggressive for larger model
|
||||
"presence_penalty": 1.0, # Balanced
|
||||
"top_p": 0.9, # More creative
|
||||
"top_k": 40, # More choices
|
||||
"repeat_penalty": 1.1, # Less aggressive for larger model
|
||||
"presence_penalty": 1.0, # Balanced
|
||||
"top_p": 0.9, # More creative
|
||||
"top_k": 40, # More choices
|
||||
}
|
||||
|
||||
|
||||
elif any(size in model_name.lower() for size in ["3b", "7b", "8b"]):
|
||||
return {
|
||||
**base_params,
|
||||
"repeat_penalty": 1.05, # Minimal for larger models
|
||||
"presence_penalty": 0.5, # Light touch
|
||||
"top_p": 0.95, # High creativity
|
||||
"top_k": 50, # Many choices
|
||||
"num_predict": 3000, # Longer responses OK
|
||||
"repeat_penalty": 1.05, # Minimal for larger models
|
||||
"presence_penalty": 0.5, # Light touch
|
||||
"top_p": 0.95, # High creativity
|
||||
"top_k": 50, # Many choices
|
||||
"num_predict": 3000, # Longer responses OK
|
||||
}
|
||||
|
||||
|
||||
return base_params
|
||||
|
||||
|
||||
# Quick test
|
||||
|
||||
|
||||
def test_safeguards():
|
||||
"""Test the safeguard system."""
|
||||
detector = ModelRunawayDetector()
|
||||
|
||||
|
||||
# Test repetition detection
|
||||
bad_response = "The user authentication system works by checking user credentials. The user authentication system works by checking user credentials. The user authentication system works by checking user credentials."
|
||||
|
||||
is_valid, issue, explanation = detector.check_response_quality(bad_response, "auth", time.time())
|
||||
|
||||
|
||||
is_valid, issue, explanation = detector.check_response_quality(
|
||||
bad_response, "auth", time.time()
|
||||
)
|
||||
|
||||
print(f"Repetition test: Valid={is_valid}, Issue={issue}")
|
||||
if explanation:
|
||||
print(explanation)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_safeguards()
|
||||
test_safeguards()
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -3,16 +3,16 @@ Non-invasive file watcher designed to not interfere with development workflows.
|
||||
Uses minimal resources and gracefully handles high-load scenarios.
|
||||
"""
|
||||
|
||||
import os
|
||||
import time
|
||||
import logging
|
||||
import threading
|
||||
import queue
|
||||
import threading
|
||||
import time
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Optional, Set
|
||||
from datetime import datetime
|
||||
|
||||
from watchdog.events import DirModifiedEvent, FileSystemEventHandler
|
||||
from watchdog.observers import Observer
|
||||
from watchdog.events import FileSystemEventHandler, DirModifiedEvent
|
||||
|
||||
from .indexer import ProjectIndexer
|
||||
|
||||
@ -21,7 +21,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class NonInvasiveQueue:
|
||||
"""Ultra-lightweight queue with aggressive deduplication and backoff."""
|
||||
|
||||
|
||||
def __init__(self, delay: float = 5.0, max_queue_size: int = 100):
|
||||
self.queue = queue.Queue(maxsize=max_queue_size)
|
||||
self.pending = set()
|
||||
@ -29,28 +29,28 @@ class NonInvasiveQueue:
|
||||
self.delay = delay
|
||||
self.last_update = {}
|
||||
self.dropped_count = 0
|
||||
|
||||
|
||||
def add(self, file_path: Path) -> bool:
|
||||
"""Add file to queue with aggressive filtering."""
|
||||
with self.lock:
|
||||
file_str = str(file_path)
|
||||
current_time = time.time()
|
||||
|
||||
|
||||
# Skip if recently processed
|
||||
if file_str in self.last_update:
|
||||
if current_time - self.last_update[file_str] < self.delay:
|
||||
return False
|
||||
|
||||
|
||||
# Skip if already pending
|
||||
if file_str in self.pending:
|
||||
return False
|
||||
|
||||
|
||||
# Skip if queue is getting full (backpressure)
|
||||
if self.queue.qsize() > self.queue.maxsize * 0.8:
|
||||
self.dropped_count += 1
|
||||
logger.debug(f"Dropping update for {file_str} - queue overloaded")
|
||||
return False
|
||||
|
||||
|
||||
try:
|
||||
self.queue.put_nowait(file_path)
|
||||
self.pending.add(file_str)
|
||||
@ -59,7 +59,7 @@ class NonInvasiveQueue:
|
||||
except queue.Full:
|
||||
self.dropped_count += 1
|
||||
return False
|
||||
|
||||
|
||||
def get(self, timeout: float = 0.1) -> Optional[Path]:
|
||||
"""Get next file with very short timeout."""
|
||||
try:
|
||||
@ -73,77 +73,87 @@ class NonInvasiveQueue:
|
||||
|
||||
class MinimalEventHandler(FileSystemEventHandler):
|
||||
"""Minimal event handler that only watches for meaningful changes."""
|
||||
|
||||
def __init__(self,
|
||||
update_queue: NonInvasiveQueue,
|
||||
include_patterns: Set[str],
|
||||
exclude_patterns: Set[str]):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
update_queue: NonInvasiveQueue,
|
||||
include_patterns: Set[str],
|
||||
exclude_patterns: Set[str],
|
||||
):
|
||||
self.update_queue = update_queue
|
||||
self.include_patterns = include_patterns
|
||||
self.exclude_patterns = exclude_patterns
|
||||
self.last_event_time = {}
|
||||
|
||||
|
||||
def _should_process(self, file_path: str) -> bool:
|
||||
"""Ultra-conservative file filtering."""
|
||||
path = Path(file_path)
|
||||
|
||||
|
||||
# Only process files, not directories
|
||||
if not path.is_file():
|
||||
return False
|
||||
|
||||
|
||||
# Skip if too large (>1MB)
|
||||
try:
|
||||
if path.stat().st_size > 1024 * 1024:
|
||||
return False
|
||||
except (OSError, PermissionError):
|
||||
return False
|
||||
|
||||
|
||||
# Skip temporary and system files
|
||||
name = path.name
|
||||
if (name.startswith('.') or
|
||||
name.startswith('~') or
|
||||
name.endswith('.tmp') or
|
||||
name.endswith('.swp') or
|
||||
name.endswith('.lock')):
|
||||
if (
|
||||
name.startswith(".")
|
||||
or name.startswith("~")
|
||||
or name.endswith(".tmp")
|
||||
or name.endswith(".swp")
|
||||
or name.endswith(".lock")
|
||||
):
|
||||
return False
|
||||
|
||||
|
||||
# Check exclude patterns first (faster)
|
||||
path_str = str(path)
|
||||
for pattern in self.exclude_patterns:
|
||||
if pattern in path_str:
|
||||
return False
|
||||
|
||||
|
||||
# Check include patterns
|
||||
for pattern in self.include_patterns:
|
||||
if path.match(pattern):
|
||||
return True
|
||||
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def _rate_limit_event(self, file_path: str) -> bool:
|
||||
"""Rate limit events per file."""
|
||||
current_time = time.time()
|
||||
if file_path in self.last_event_time:
|
||||
if current_time - self.last_event_time[file_path] < 2.0: # 2 second cooldown per file
|
||||
if (
|
||||
current_time - self.last_event_time[file_path] < 2.0
|
||||
): # 2 second cooldown per file
|
||||
return False
|
||||
|
||||
|
||||
self.last_event_time[file_path] = current_time
|
||||
return True
|
||||
|
||||
|
||||
def on_modified(self, event):
|
||||
"""Handle file modifications with minimal overhead."""
|
||||
if (not event.is_directory and
|
||||
self._should_process(event.src_path) and
|
||||
self._rate_limit_event(event.src_path)):
|
||||
if (
|
||||
not event.is_directory
|
||||
and self._should_process(event.src_path)
|
||||
and self._rate_limit_event(event.src_path)
|
||||
):
|
||||
self.update_queue.add(Path(event.src_path))
|
||||
|
||||
|
||||
def on_created(self, event):
|
||||
"""Handle file creation."""
|
||||
if (not event.is_directory and
|
||||
self._should_process(event.src_path) and
|
||||
self._rate_limit_event(event.src_path)):
|
||||
if (
|
||||
not event.is_directory
|
||||
and self._should_process(event.src_path)
|
||||
and self._rate_limit_event(event.src_path)
|
||||
):
|
||||
self.update_queue.add(Path(event.src_path))
|
||||
|
||||
|
||||
def on_deleted(self, event):
|
||||
"""Handle file deletion."""
|
||||
if not event.is_directory and self._rate_limit_event(event.src_path):
|
||||
@ -157,15 +167,17 @@ class MinimalEventHandler(FileSystemEventHandler):
|
||||
|
||||
class NonInvasiveFileWatcher:
|
||||
"""Non-invasive file watcher that prioritizes system stability."""
|
||||
|
||||
def __init__(self,
|
||||
project_path: Path,
|
||||
indexer: Optional[ProjectIndexer] = None,
|
||||
cpu_limit: float = 0.1, # Max 10% CPU usage
|
||||
max_memory_mb: int = 50): # Max 50MB memory
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
project_path: Path,
|
||||
indexer: Optional[ProjectIndexer] = None,
|
||||
cpu_limit: float = 0.1, # Max 10% CPU usage
|
||||
max_memory_mb: int = 50,
|
||||
): # Max 50MB memory
|
||||
"""
|
||||
Initialize non-invasive watcher.
|
||||
|
||||
|
||||
Args:
|
||||
project_path: Path to watch
|
||||
indexer: ProjectIndexer instance
|
||||
@ -176,158 +188,173 @@ class NonInvasiveFileWatcher:
|
||||
self.indexer = indexer or ProjectIndexer(self.project_path)
|
||||
self.cpu_limit = cpu_limit
|
||||
self.max_memory_mb = max_memory_mb
|
||||
|
||||
|
||||
# Initialize components with conservative settings
|
||||
self.update_queue = NonInvasiveQueue(delay=10.0, max_queue_size=50) # Very conservative
|
||||
self.update_queue = NonInvasiveQueue(
|
||||
delay=10.0, max_queue_size=50
|
||||
) # Very conservative
|
||||
self.observer = Observer()
|
||||
self.worker_thread = None
|
||||
self.running = False
|
||||
|
||||
|
||||
# Get patterns from indexer
|
||||
self.include_patterns = set(self.indexer.include_patterns)
|
||||
self.exclude_patterns = set(self.indexer.exclude_patterns)
|
||||
|
||||
|
||||
# Add more aggressive exclusions
|
||||
self.exclude_patterns.update({
|
||||
'__pycache__', '.git', 'node_modules', '.venv', 'venv',
|
||||
'dist', 'build', 'target', '.idea', '.vscode', '.pytest_cache',
|
||||
'coverage', 'htmlcov', '.coverage', '.mypy_cache', '.tox',
|
||||
'logs', 'log', 'tmp', 'temp', '.DS_Store'
|
||||
})
|
||||
|
||||
self.exclude_patterns.update(
|
||||
{
|
||||
"__pycache__",
|
||||
".git",
|
||||
"node_modules",
|
||||
".venv",
|
||||
"venv",
|
||||
"dist",
|
||||
"build",
|
||||
"target",
|
||||
".idea",
|
||||
".vscode",
|
||||
".pytest_cache",
|
||||
"coverage",
|
||||
"htmlcov",
|
||||
".coverage",
|
||||
".mypy_cache",
|
||||
".tox",
|
||||
"logs",
|
||||
"log",
|
||||
"tmp",
|
||||
"temp",
|
||||
".DS_Store",
|
||||
}
|
||||
)
|
||||
|
||||
# Stats
|
||||
self.stats = {
|
||||
'files_processed': 0,
|
||||
'files_dropped': 0,
|
||||
'cpu_throttle_count': 0,
|
||||
'started_at': None,
|
||||
"files_processed": 0,
|
||||
"files_dropped": 0,
|
||||
"cpu_throttle_count": 0,
|
||||
"started_at": None,
|
||||
}
|
||||
|
||||
|
||||
def start(self):
|
||||
"""Start non-invasive watching."""
|
||||
if self.running:
|
||||
return
|
||||
|
||||
|
||||
logger.info(f"Starting non-invasive file watcher for {self.project_path}")
|
||||
|
||||
|
||||
# Set up minimal event handler
|
||||
event_handler = MinimalEventHandler(
|
||||
self.update_queue,
|
||||
self.include_patterns,
|
||||
self.exclude_patterns
|
||||
self.update_queue, self.include_patterns, self.exclude_patterns
|
||||
)
|
||||
|
||||
|
||||
# Schedule with recursive watching
|
||||
self.observer.schedule(
|
||||
event_handler,
|
||||
str(self.project_path),
|
||||
recursive=True
|
||||
)
|
||||
|
||||
self.observer.schedule(event_handler, str(self.project_path), recursive=True)
|
||||
|
||||
# Start low-priority worker thread
|
||||
self.running = True
|
||||
self.worker_thread = threading.Thread(
|
||||
target=self._process_updates_gently,
|
||||
daemon=True,
|
||||
name="RAG-FileWatcher"
|
||||
target=self._process_updates_gently, daemon=True, name="RAG-FileWatcher"
|
||||
)
|
||||
# Set lowest priority
|
||||
self.worker_thread.start()
|
||||
|
||||
|
||||
# Start observer
|
||||
self.observer.start()
|
||||
|
||||
self.stats['started_at'] = datetime.now()
|
||||
|
||||
self.stats["started_at"] = datetime.now()
|
||||
logger.info("Non-invasive file watcher started")
|
||||
|
||||
|
||||
def stop(self):
|
||||
"""Stop watching gracefully."""
|
||||
if not self.running:
|
||||
return
|
||||
|
||||
|
||||
logger.info("Stopping non-invasive file watcher...")
|
||||
|
||||
|
||||
# Stop observer first
|
||||
self.observer.stop()
|
||||
self.observer.join(timeout=2.0) # Don't wait too long
|
||||
|
||||
|
||||
# Stop worker thread
|
||||
self.running = False
|
||||
if self.worker_thread and self.worker_thread.is_alive():
|
||||
self.worker_thread.join(timeout=3.0) # Don't block shutdown
|
||||
|
||||
|
||||
logger.info("Non-invasive file watcher stopped")
|
||||
|
||||
|
||||
def _process_updates_gently(self):
|
||||
"""Process updates with extreme care not to interfere."""
|
||||
logger.debug("Non-invasive update processor started")
|
||||
|
||||
|
||||
process_start_time = time.time()
|
||||
|
||||
|
||||
while self.running:
|
||||
try:
|
||||
# Yield CPU frequently
|
||||
time.sleep(0.5) # Always sleep between operations
|
||||
|
||||
|
||||
# Get next file with very short timeout
|
||||
file_path = self.update_queue.get(timeout=0.1)
|
||||
|
||||
|
||||
if file_path:
|
||||
# Check CPU usage before processing
|
||||
current_time = time.time()
|
||||
elapsed = current_time - process_start_time
|
||||
|
||||
|
||||
# Simple CPU throttling: if we've been working too much, back off
|
||||
if elapsed > 0:
|
||||
# If we're consuming too much time, throttle aggressively
|
||||
work_ratio = 0.1 # Assume we use 10% of time in this check
|
||||
if work_ratio > self.cpu_limit:
|
||||
self.stats['cpu_throttle_count'] += 1
|
||||
self.stats["cpu_throttle_count"] += 1
|
||||
time.sleep(2.0) # Back off significantly
|
||||
continue
|
||||
|
||||
|
||||
# Process single file with error isolation
|
||||
try:
|
||||
if file_path.exists():
|
||||
success = self.indexer.update_file(file_path)
|
||||
else:
|
||||
success = self.indexer.delete_file(file_path)
|
||||
|
||||
|
||||
if success:
|
||||
self.stats['files_processed'] += 1
|
||||
|
||||
self.stats["files_processed"] += 1
|
||||
|
||||
# Always yield CPU after processing
|
||||
time.sleep(0.1)
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.debug(f"Non-invasive watcher: failed to process {file_path}: {e}")
|
||||
logger.debug(
|
||||
f"Non-invasive watcher: failed to process {file_path}: {e}"
|
||||
)
|
||||
# Don't let errors propagate - just continue
|
||||
continue
|
||||
|
||||
|
||||
# Update dropped count from queue
|
||||
self.stats['files_dropped'] = self.update_queue.dropped_count
|
||||
|
||||
self.stats["files_dropped"] = self.update_queue.dropped_count
|
||||
|
||||
except Exception as e:
|
||||
logger.debug(f"Non-invasive watcher error: {e}")
|
||||
time.sleep(1.0) # Back off on errors
|
||||
|
||||
|
||||
logger.debug("Non-invasive update processor stopped")
|
||||
|
||||
|
||||
def get_statistics(self) -> dict:
|
||||
"""Get non-invasive watcher statistics."""
|
||||
stats = self.stats.copy()
|
||||
stats['queue_size'] = self.update_queue.queue.qsize()
|
||||
stats['running'] = self.running
|
||||
|
||||
if stats['started_at']:
|
||||
uptime = datetime.now() - stats['started_at']
|
||||
stats['uptime_seconds'] = uptime.total_seconds()
|
||||
|
||||
stats["queue_size"] = self.update_queue.queue.qsize()
|
||||
stats["running"] = self.running
|
||||
|
||||
if stats["started_at"]:
|
||||
uptime = datetime.now() - stats["started_at"]
|
||||
stats["uptime_seconds"] = uptime.total_seconds()
|
||||
|
||||
return stats
|
||||
|
||||
|
||||
def __enter__(self):
|
||||
self.start()
|
||||
return self
|
||||
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.stop()
|
||||
self.stop()
|
||||
|
||||
@ -3,15 +3,14 @@ Hybrid code embedding module - Ollama primary with ML fallback.
|
||||
Tries Ollama first, falls back to local ML stack if needed.
|
||||
"""
|
||||
|
||||
import requests
|
||||
import numpy as np
|
||||
from typing import List, Union, Optional, Dict, Any
|
||||
import logging
|
||||
from functools import lru_cache
|
||||
import time
|
||||
import json
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import threading
|
||||
from functools import lru_cache
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import requests
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -19,8 +18,9 @@ logger = logging.getLogger(__name__)
|
||||
FALLBACK_AVAILABLE = False
|
||||
try:
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
FALLBACK_AVAILABLE = True
|
||||
logger.debug("ML fallback dependencies available")
|
||||
except ImportError:
|
||||
@ -29,12 +29,16 @@ except ImportError:
|
||||
|
||||
class OllamaEmbedder:
|
||||
"""Hybrid embeddings: Ollama primary with ML fallback."""
|
||||
|
||||
def __init__(self, model_name: str = "nomic-embed-text:latest", base_url: str = "http://localhost:11434",
|
||||
enable_fallback: bool = True):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = "nomic-embed-text:latest",
|
||||
base_url: str = "http://localhost:11434",
|
||||
enable_fallback: bool = True,
|
||||
):
|
||||
"""
|
||||
Initialize the hybrid embedder.
|
||||
|
||||
|
||||
Args:
|
||||
model_name: Ollama model to use for embeddings
|
||||
base_url: Base URL for Ollama API
|
||||
@ -44,15 +48,15 @@ class OllamaEmbedder:
|
||||
self.base_url = base_url
|
||||
self.embedding_dim = 768 # Standard for nomic-embed-text
|
||||
self.enable_fallback = enable_fallback and FALLBACK_AVAILABLE
|
||||
|
||||
|
||||
# State tracking
|
||||
self.ollama_available = False
|
||||
self.fallback_embedder = None
|
||||
self.mode = "unknown" # "ollama", "fallback", or "hash"
|
||||
|
||||
|
||||
# Try to initialize Ollama first
|
||||
self._initialize_providers()
|
||||
|
||||
|
||||
def _initialize_providers(self):
|
||||
"""Initialize embedding providers in priority order."""
|
||||
# Try Ollama first
|
||||
@ -64,13 +68,15 @@ class OllamaEmbedder:
|
||||
except Exception as e:
|
||||
logger.debug(f"Ollama not available: {e}")
|
||||
self.ollama_available = False
|
||||
|
||||
|
||||
# Try ML fallback
|
||||
if self.enable_fallback:
|
||||
try:
|
||||
self._initialize_fallback_embedder()
|
||||
self.mode = "fallback"
|
||||
logger.info(f"✅ ML fallback active: {self.fallback_embedder.model_type if hasattr(self.fallback_embedder, 'model_type') else 'transformer'}")
|
||||
logger.info(
|
||||
f"✅ ML fallback active: {self.fallback_embedder.model_type if hasattr(self.fallback_embedder, 'model_type') else 'transformer'}"
|
||||
)
|
||||
except Exception as fallback_error:
|
||||
logger.warning(f"ML fallback failed: {fallback_error}")
|
||||
self.mode = "hash"
|
||||
@ -78,7 +84,7 @@ class OllamaEmbedder:
|
||||
else:
|
||||
self.mode = "hash"
|
||||
logger.info("⚠️ Using hash-based embeddings (no fallback enabled)")
|
||||
|
||||
|
||||
def _verify_ollama_connection(self):
|
||||
"""Verify Ollama server is running and model is available."""
|
||||
try:
|
||||
@ -93,17 +99,17 @@ class OllamaEmbedder:
|
||||
print()
|
||||
raise ConnectionError("Ollama service not running. Start with: ollama serve")
|
||||
except requests.exceptions.Timeout:
|
||||
print("⏱️ Ollama Service Timeout")
|
||||
print("⏱️ Ollama Service Timeout")
|
||||
print(" Ollama is taking too long to respond")
|
||||
print(" Check if Ollama is overloaded: ollama ps")
|
||||
print(" Restart if needed: killall ollama && ollama serve")
|
||||
print()
|
||||
raise ConnectionError("Ollama service timeout")
|
||||
|
||||
|
||||
# Check if our model is available
|
||||
models = response.json().get('models', [])
|
||||
model_names = [model['name'] for model in models]
|
||||
|
||||
models = response.json().get("models", [])
|
||||
model_names = [model["name"] for model in models]
|
||||
|
||||
if self.model_name not in model_names:
|
||||
print(f"📦 Model '{self.model_name}' Not Found")
|
||||
print(" Embedding models convert text into searchable vectors")
|
||||
@ -113,19 +119,23 @@ class OllamaEmbedder:
|
||||
print()
|
||||
# Try to pull the model
|
||||
self._pull_model()
|
||||
|
||||
|
||||
def _initialize_fallback_embedder(self):
|
||||
"""Initialize the ML fallback embedder."""
|
||||
if not FALLBACK_AVAILABLE:
|
||||
raise RuntimeError("ML dependencies not available for fallback")
|
||||
|
||||
|
||||
# Try lightweight models first for better compatibility
|
||||
fallback_models = [
|
||||
("sentence-transformers/all-MiniLM-L6-v2", 384, self._init_sentence_transformer),
|
||||
(
|
||||
"sentence-transformers/all-MiniLM-L6-v2",
|
||||
384,
|
||||
self._init_sentence_transformer,
|
||||
),
|
||||
("microsoft/codebert-base", 768, self._init_transformer_model),
|
||||
("microsoft/unixcoder-base", 768, self._init_transformer_model),
|
||||
]
|
||||
|
||||
|
||||
for model_name, dim, init_func in fallback_models:
|
||||
try:
|
||||
init_func(model_name)
|
||||
@ -135,31 +145,33 @@ class OllamaEmbedder:
|
||||
except Exception as e:
|
||||
logger.debug(f"Failed to load {model_name}: {e}")
|
||||
continue
|
||||
|
||||
|
||||
raise RuntimeError("Could not initialize any fallback embedding model")
|
||||
|
||||
|
||||
def _init_sentence_transformer(self, model_name: str):
|
||||
"""Initialize sentence-transformers model."""
|
||||
self.fallback_embedder = SentenceTransformer(model_name)
|
||||
self.fallback_embedder.model_type = 'sentence_transformer'
|
||||
|
||||
self.fallback_embedder.model_type = "sentence_transformer"
|
||||
|
||||
def _init_transformer_model(self, model_name: str):
|
||||
"""Initialize transformer model."""
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModel.from_pretrained(model_name).to(device)
|
||||
model.eval()
|
||||
|
||||
|
||||
# Create a simple wrapper
|
||||
|
||||
class TransformerWrapper:
|
||||
|
||||
def __init__(self, model, tokenizer, device):
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
self.device = device
|
||||
self.model_type = 'transformer'
|
||||
|
||||
self.model_type = "transformer"
|
||||
|
||||
self.fallback_embedder = TransformerWrapper(model, tokenizer, device)
|
||||
|
||||
|
||||
def _pull_model(self):
|
||||
"""Pull the embedding model if not available."""
|
||||
logger.info(f"Pulling model {self.model_name}...")
|
||||
@ -167,13 +179,13 @@ class OllamaEmbedder:
|
||||
response = requests.post(
|
||||
f"{self.base_url}/api/pull",
|
||||
json={"name": self.model_name},
|
||||
timeout=300 # 5 minutes for model download
|
||||
timeout=300, # 5 minutes for model download
|
||||
)
|
||||
response.raise_for_status()
|
||||
logger.info(f"Successfully pulled {self.model_name}")
|
||||
except requests.exceptions.RequestException as e:
|
||||
raise RuntimeError(f"Failed to pull model {self.model_name}: {e}")
|
||||
|
||||
|
||||
def _get_embedding(self, text: str) -> np.ndarray:
|
||||
"""Get embedding using the best available provider."""
|
||||
if self.mode == "ollama" and self.ollama_available:
|
||||
@ -183,28 +195,25 @@ class OllamaEmbedder:
|
||||
else:
|
||||
# Hash fallback
|
||||
return self._hash_embedding(text)
|
||||
|
||||
|
||||
def _get_ollama_embedding(self, text: str) -> np.ndarray:
|
||||
"""Get embedding from Ollama API."""
|
||||
try:
|
||||
response = requests.post(
|
||||
f"{self.base_url}/api/embeddings",
|
||||
json={
|
||||
"model": self.model_name,
|
||||
"prompt": text
|
||||
},
|
||||
timeout=30
|
||||
json={"model": self.model_name, "prompt": text},
|
||||
timeout=30,
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
|
||||
result = response.json()
|
||||
embedding = result.get('embedding', [])
|
||||
|
||||
embedding = result.get("embedding", [])
|
||||
|
||||
if not embedding:
|
||||
raise ValueError("No embedding returned from Ollama")
|
||||
|
||||
|
||||
return np.array(embedding, dtype=np.float32)
|
||||
|
||||
|
||||
except requests.exceptions.RequestException as e:
|
||||
logger.error(f"Ollama API request failed: {e}")
|
||||
# Degrade gracefully - try fallback if available
|
||||
@ -216,82 +225,88 @@ class OllamaEmbedder:
|
||||
except (ValueError, KeyError) as e:
|
||||
logger.error(f"Invalid response from Ollama: {e}")
|
||||
return self._hash_embedding(text)
|
||||
|
||||
|
||||
def _get_fallback_embedding(self, text: str) -> np.ndarray:
|
||||
"""Get embedding from ML fallback."""
|
||||
try:
|
||||
if self.fallback_embedder.model_type == 'sentence_transformer':
|
||||
if self.fallback_embedder.model_type == "sentence_transformer":
|
||||
embedding = self.fallback_embedder.encode([text], convert_to_numpy=True)[0]
|
||||
return embedding.astype(np.float32)
|
||||
|
||||
elif self.fallback_embedder.model_type == 'transformer':
|
||||
|
||||
elif self.fallback_embedder.model_type == "transformer":
|
||||
# Tokenize and generate embedding
|
||||
inputs = self.fallback_embedder.tokenizer(
|
||||
text,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
text,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
max_length=512,
|
||||
return_tensors="pt"
|
||||
return_tensors="pt",
|
||||
).to(self.fallback_embedder.device)
|
||||
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = self.fallback_embedder.model(**inputs)
|
||||
|
||||
|
||||
# Use pooler output if available, otherwise mean pooling
|
||||
if hasattr(outputs, 'pooler_output') and outputs.pooler_output is not None:
|
||||
if hasattr(outputs, "pooler_output") and outputs.pooler_output is not None:
|
||||
embedding = outputs.pooler_output[0]
|
||||
else:
|
||||
# Mean pooling over sequence length
|
||||
attention_mask = inputs['attention_mask']
|
||||
attention_mask = inputs["attention_mask"]
|
||||
token_embeddings = outputs.last_hidden_state[0]
|
||||
|
||||
|
||||
# Mask and average
|
||||
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
||||
input_mask_expanded = (
|
||||
attention_mask.unsqueeze(-1)
|
||||
.expand(token_embeddings.size())
|
||||
.float()
|
||||
)
|
||||
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 0)
|
||||
sum_mask = torch.clamp(input_mask_expanded.sum(0), min=1e-9)
|
||||
embedding = sum_embeddings / sum_mask
|
||||
|
||||
|
||||
return embedding.cpu().numpy().astype(np.float32)
|
||||
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown fallback model type: {self.fallback_embedder.model_type}")
|
||||
|
||||
raise ValueError(
|
||||
f"Unknown fallback model type: {self.fallback_embedder.model_type}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Fallback embedding failed: {e}")
|
||||
return self._hash_embedding(text)
|
||||
|
||||
|
||||
def _hash_embedding(self, text: str) -> np.ndarray:
|
||||
"""Generate deterministic hash-based embedding as fallback."""
|
||||
import hashlib
|
||||
|
||||
|
||||
# Create deterministic hash
|
||||
hash_obj = hashlib.sha256(text.encode('utf-8'))
|
||||
hash_obj = hashlib.sha256(text.encode("utf-8"))
|
||||
hash_bytes = hash_obj.digest()
|
||||
|
||||
|
||||
# Convert to numbers and normalize
|
||||
hash_nums = np.frombuffer(hash_bytes, dtype=np.uint8)
|
||||
|
||||
|
||||
# Expand to target dimension using repetition
|
||||
while len(hash_nums) < self.embedding_dim:
|
||||
hash_nums = np.concatenate([hash_nums, hash_nums])
|
||||
|
||||
|
||||
# Take exactly the dimension we need
|
||||
embedding = hash_nums[:self.embedding_dim].astype(np.float32)
|
||||
|
||||
embedding = hash_nums[: self.embedding_dim].astype(np.float32)
|
||||
|
||||
# Normalize to [-1, 1] range
|
||||
embedding = (embedding / 127.5) - 1.0
|
||||
|
||||
|
||||
logger.debug(f"Using hash fallback embedding for text: {text[:50]}...")
|
||||
return embedding
|
||||
|
||||
|
||||
def embed_code(self, code: Union[str, List[str]], language: str = "python") -> np.ndarray:
|
||||
"""
|
||||
Generate embeddings for code snippet(s).
|
||||
|
||||
|
||||
Args:
|
||||
code: Single code string or list of code strings
|
||||
language: Programming language (used for context)
|
||||
|
||||
|
||||
Returns:
|
||||
Embedding vector(s) as numpy array
|
||||
"""
|
||||
@ -300,22 +315,22 @@ class OllamaEmbedder:
|
||||
single_input = True
|
||||
else:
|
||||
single_input = False
|
||||
|
||||
|
||||
# Preprocess code for better embeddings
|
||||
processed_code = [self._preprocess_code(c, language) for c in code]
|
||||
|
||||
|
||||
# Generate embeddings
|
||||
embeddings = []
|
||||
for text in processed_code:
|
||||
embedding = self._get_embedding(text)
|
||||
embeddings.append(embedding)
|
||||
|
||||
|
||||
embeddings = np.array(embeddings, dtype=np.float32)
|
||||
|
||||
|
||||
if single_input:
|
||||
return embeddings[0]
|
||||
return embeddings
|
||||
|
||||
|
||||
def _preprocess_code(self, code: str, language: str = "python") -> str:
|
||||
"""
|
||||
Preprocess code for better embedding quality.
|
||||
@ -323,25 +338,25 @@ class OllamaEmbedder:
|
||||
"""
|
||||
# Remove leading/trailing whitespace
|
||||
code = code.strip()
|
||||
|
||||
|
||||
# Normalize whitespace but preserve structure
|
||||
lines = code.split('\n')
|
||||
lines = code.split("\n")
|
||||
processed_lines = []
|
||||
|
||||
|
||||
for line in lines:
|
||||
# Remove trailing whitespace
|
||||
line = line.rstrip()
|
||||
# Keep non-empty lines
|
||||
if line:
|
||||
processed_lines.append(line)
|
||||
|
||||
cleaned_code = '\n'.join(processed_lines)
|
||||
|
||||
|
||||
cleaned_code = "\n".join(processed_lines)
|
||||
|
||||
# Add language context for better embeddings
|
||||
if language and cleaned_code:
|
||||
return f"```{language}\n{cleaned_code}\n```"
|
||||
return cleaned_code
|
||||
|
||||
|
||||
@lru_cache(maxsize=1000)
|
||||
def embed_query(self, query: str) -> np.ndarray:
|
||||
"""
|
||||
@ -351,149 +366,151 @@ class OllamaEmbedder:
|
||||
# Enhance query for code search
|
||||
enhanced_query = f"Search for code related to: {query}"
|
||||
return self._get_embedding(enhanced_query)
|
||||
|
||||
|
||||
def batch_embed_files(self, file_contents: List[dict], max_workers: int = 4) -> List[dict]:
|
||||
"""
|
||||
Embed multiple files efficiently using concurrent requests to Ollama.
|
||||
|
||||
|
||||
Args:
|
||||
file_contents: List of dicts with 'content' and optionally 'language' keys
|
||||
max_workers: Maximum number of concurrent Ollama requests
|
||||
|
||||
|
||||
Returns:
|
||||
List of dicts with added 'embedding' key (preserves original order)
|
||||
"""
|
||||
if not file_contents:
|
||||
return []
|
||||
|
||||
|
||||
# For small batches, use sequential processing to avoid overhead
|
||||
if len(file_contents) <= 2:
|
||||
return self._batch_embed_sequential(file_contents)
|
||||
|
||||
|
||||
# For very large batches, use chunked processing to prevent memory issues
|
||||
if len(file_contents) > 500: # Process in chunks to manage memory
|
||||
return self._batch_embed_chunked(file_contents, max_workers)
|
||||
|
||||
|
||||
return self._batch_embed_concurrent(file_contents, max_workers)
|
||||
|
||||
|
||||
def _batch_embed_sequential(self, file_contents: List[dict]) -> List[dict]:
|
||||
"""Sequential processing for small batches."""
|
||||
results = []
|
||||
for file_dict in file_contents:
|
||||
content = file_dict['content']
|
||||
language = file_dict.get('language', 'python')
|
||||
content = file_dict["content"]
|
||||
language = file_dict.get("language", "python")
|
||||
embedding = self.embed_code(content, language)
|
||||
|
||||
|
||||
result = file_dict.copy()
|
||||
result['embedding'] = embedding
|
||||
result["embedding"] = embedding
|
||||
results.append(result)
|
||||
|
||||
|
||||
return results
|
||||
|
||||
def _batch_embed_concurrent(self, file_contents: List[dict], max_workers: int) -> List[dict]:
|
||||
|
||||
def _batch_embed_concurrent(
|
||||
self, file_contents: List[dict], max_workers: int
|
||||
) -> List[dict]:
|
||||
"""Concurrent processing for larger batches."""
|
||||
|
||||
def embed_single(item_with_index):
|
||||
index, file_dict = item_with_index
|
||||
content = file_dict['content']
|
||||
language = file_dict.get('language', 'python')
|
||||
|
||||
content = file_dict["content"]
|
||||
language = file_dict.get("language", "python")
|
||||
|
||||
try:
|
||||
embedding = self.embed_code(content, language)
|
||||
result = file_dict.copy()
|
||||
result['embedding'] = embedding
|
||||
result["embedding"] = embedding
|
||||
return index, result
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to embed content at index {index}: {e}")
|
||||
# Return with hash fallback
|
||||
result = file_dict.copy()
|
||||
result['embedding'] = self._hash_embedding(content)
|
||||
result["embedding"] = self._hash_embedding(content)
|
||||
return index, result
|
||||
|
||||
|
||||
# Create indexed items to preserve order
|
||||
indexed_items = list(enumerate(file_contents))
|
||||
|
||||
|
||||
# Process concurrently
|
||||
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
||||
indexed_results = list(executor.map(embed_single, indexed_items))
|
||||
|
||||
|
||||
# Sort by original index and extract results
|
||||
indexed_results.sort(key=lambda x: x[0])
|
||||
return [result for _, result in indexed_results]
|
||||
|
||||
def _batch_embed_chunked(self, file_contents: List[dict], max_workers: int, chunk_size: int = 200) -> List[dict]:
|
||||
|
||||
def _batch_embed_chunked(
|
||||
self, file_contents: List[dict], max_workers: int, chunk_size: int = 200
|
||||
) -> List[dict]:
|
||||
"""
|
||||
Process very large batches in smaller chunks to prevent memory issues.
|
||||
This is important for beginners who might try to index huge projects.
|
||||
"""
|
||||
results = []
|
||||
total_chunks = len(file_contents)
|
||||
|
||||
|
||||
# Process in chunks
|
||||
for i in range(0, len(file_contents), chunk_size):
|
||||
chunk = file_contents[i:i + chunk_size]
|
||||
|
||||
chunk = file_contents[i : i + chunk_size]
|
||||
|
||||
# Log progress for large operations
|
||||
if total_chunks > chunk_size:
|
||||
chunk_num = i // chunk_size + 1
|
||||
total_chunk_count = (total_chunks + chunk_size - 1) // chunk_size
|
||||
logger.info(f"Processing chunk {chunk_num}/{total_chunk_count} ({len(chunk)} files)")
|
||||
|
||||
logger.info(
|
||||
f"Processing chunk {chunk_num}/{total_chunk_count} ({len(chunk)} files)"
|
||||
)
|
||||
|
||||
# Process this chunk using concurrent method
|
||||
chunk_results = self._batch_embed_concurrent(chunk, max_workers)
|
||||
results.extend(chunk_results)
|
||||
|
||||
|
||||
# Brief pause between chunks to prevent overwhelming the system
|
||||
if i + chunk_size < len(file_contents):
|
||||
import time
|
||||
|
||||
time.sleep(0.1) # 100ms pause between chunks
|
||||
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def get_embedding_dim(self) -> int:
|
||||
"""Return the dimension of embeddings produced by this model."""
|
||||
return self.embedding_dim
|
||||
|
||||
|
||||
def get_mode(self) -> str:
|
||||
"""Return current embedding mode: 'ollama', 'fallback', or 'hash'."""
|
||||
return self.mode
|
||||
|
||||
|
||||
def get_status(self) -> Dict[str, Any]:
|
||||
"""Get detailed status of the embedding system."""
|
||||
return {
|
||||
"mode": self.mode,
|
||||
"ollama_available": self.ollama_available,
|
||||
"fallback_available": FALLBACK_AVAILABLE and self.enable_fallback,
|
||||
"fallback_model": getattr(self.fallback_embedder, 'model_type', None) if self.fallback_embedder else None,
|
||||
"fallback_model": (
|
||||
getattr(self.fallback_embedder, "model_type", None)
|
||||
if self.fallback_embedder
|
||||
else None
|
||||
),
|
||||
"embedding_dim": self.embedding_dim,
|
||||
"ollama_model": self.model_name if self.mode == "ollama" else None,
|
||||
"ollama_url": self.base_url if self.mode == "ollama" else None
|
||||
"ollama_url": self.base_url if self.mode == "ollama" else None,
|
||||
}
|
||||
|
||||
|
||||
def get_embedding_info(self) -> Dict[str, str]:
|
||||
"""Get human-readable embedding system information for installer."""
|
||||
status = self.get_status()
|
||||
mode = status.get("mode", "unknown")
|
||||
if mode == "ollama":
|
||||
return {
|
||||
"method": f"Ollama ({status['ollama_model']})",
|
||||
"status": "working"
|
||||
}
|
||||
return {"method": f"Ollama ({status['ollama_model']})", "status": "working"}
|
||||
# Treat legacy/alternate naming uniformly
|
||||
if mode in ("fallback", "ml"):
|
||||
return {
|
||||
"method": f"ML Fallback ({status['fallback_model']})",
|
||||
"status": "working"
|
||||
"status": "working",
|
||||
}
|
||||
if mode == "hash":
|
||||
return {
|
||||
"method": "Hash-based (basic similarity)",
|
||||
"status": "working"
|
||||
}
|
||||
return {
|
||||
"method": "Unknown",
|
||||
"status": "error"
|
||||
}
|
||||
|
||||
return {"method": "Hash-based (basic similarity)", "status": "working"}
|
||||
return {"method": "Unknown", "status": "error"}
|
||||
|
||||
def warmup(self):
|
||||
"""Warm up the embedding system with a dummy request."""
|
||||
dummy_code = "def hello(): pass"
|
||||
@ -503,14 +520,18 @@ class OllamaEmbedder:
|
||||
|
||||
|
||||
# Convenience function for quick embedding
|
||||
def embed_code(code: Union[str, List[str]], model_name: str = "nomic-embed-text:latest") -> np.ndarray:
|
||||
|
||||
|
||||
def embed_code(
|
||||
code: Union[str, List[str]], model_name: str = "nomic-embed-text:latest"
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Quick function to embed code without managing embedder instance.
|
||||
|
||||
|
||||
Args:
|
||||
code: Code string(s) to embed
|
||||
model_name: Ollama model name to use
|
||||
|
||||
|
||||
Returns:
|
||||
Embedding vector(s)
|
||||
"""
|
||||
@ -519,4 +540,4 @@ def embed_code(code: Union[str, List[str]], model_name: str = "nomic-embed-text:
|
||||
|
||||
|
||||
# Compatibility alias for drop-in replacement
|
||||
CodeEmbedder = OllamaEmbedder
|
||||
CodeEmbedder = OllamaEmbedder
|
||||
|
||||
@ -4,51 +4,50 @@ Handles forward/backward slashes on any file system.
|
||||
Robust cross-platform path handling.
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Union, List
|
||||
from typing import List, Union
|
||||
|
||||
|
||||
def normalize_path(path: Union[str, Path]) -> str:
|
||||
"""
|
||||
Normalize a path to always use forward slashes.
|
||||
This ensures consistency across platforms in storage.
|
||||
|
||||
|
||||
Args:
|
||||
path: Path as string or Path object
|
||||
|
||||
|
||||
Returns:
|
||||
Path string with forward slashes
|
||||
"""
|
||||
# Convert to Path object first
|
||||
path_obj = Path(path)
|
||||
|
||||
|
||||
# Convert to string and replace backslashes
|
||||
path_str = str(path_obj).replace('\\', '/')
|
||||
|
||||
path_str = str(path_obj).replace("\\", "/")
|
||||
|
||||
# Handle UNC paths on Windows
|
||||
if sys.platform == 'win32' and path_str.startswith('//'):
|
||||
if sys.platform == "win32" and path_str.startswith("//"):
|
||||
# Keep UNC paths as they are
|
||||
return path_str
|
||||
|
||||
|
||||
return path_str
|
||||
|
||||
|
||||
def normalize_relative_path(path: Union[str, Path], base: Union[str, Path]) -> str:
|
||||
"""
|
||||
Get a normalized relative path.
|
||||
|
||||
|
||||
Args:
|
||||
path: Path to make relative
|
||||
base: Base path to be relative to
|
||||
|
||||
|
||||
Returns:
|
||||
Relative path with forward slashes
|
||||
"""
|
||||
path_obj = Path(path).resolve()
|
||||
base_obj = Path(base).resolve()
|
||||
|
||||
|
||||
try:
|
||||
rel_path = path_obj.relative_to(base_obj)
|
||||
return normalize_path(rel_path)
|
||||
@ -61,10 +60,10 @@ def denormalize_path(path_str: str) -> Path:
|
||||
"""
|
||||
Convert a normalized path string back to a Path object.
|
||||
This handles the conversion from storage format to OS format.
|
||||
|
||||
|
||||
Args:
|
||||
path_str: Normalized path string with forward slashes
|
||||
|
||||
|
||||
Returns:
|
||||
Path object appropriate for the OS
|
||||
"""
|
||||
@ -75,10 +74,10 @@ def denormalize_path(path_str: str) -> Path:
|
||||
def join_paths(*parts: Union[str, Path]) -> str:
|
||||
"""
|
||||
Join path parts and return normalized result.
|
||||
|
||||
|
||||
Args:
|
||||
*parts: Path parts to join
|
||||
|
||||
|
||||
Returns:
|
||||
Normalized joined path
|
||||
"""
|
||||
@ -90,46 +89,46 @@ def join_paths(*parts: Union[str, Path]) -> str:
|
||||
def split_path(path: Union[str, Path]) -> List[str]:
|
||||
"""
|
||||
Split a path into its components.
|
||||
|
||||
|
||||
Args:
|
||||
path: Path to split
|
||||
|
||||
|
||||
Returns:
|
||||
List of path components
|
||||
"""
|
||||
path_obj = Path(path)
|
||||
parts = []
|
||||
|
||||
|
||||
# Handle drive on Windows
|
||||
if path_obj.drive:
|
||||
parts.append(path_obj.drive)
|
||||
|
||||
|
||||
# Add all other parts
|
||||
parts.extend(path_obj.parts[1:] if path_obj.drive else path_obj.parts)
|
||||
|
||||
|
||||
return parts
|
||||
|
||||
|
||||
def ensure_forward_slashes(path_str: str) -> str:
|
||||
"""
|
||||
Quick function to ensure a path string uses forward slashes.
|
||||
|
||||
|
||||
Args:
|
||||
path_str: Path string
|
||||
|
||||
|
||||
Returns:
|
||||
Path with forward slashes
|
||||
"""
|
||||
return path_str.replace('\\', '/')
|
||||
return path_str.replace("\\", "/")
|
||||
|
||||
|
||||
def ensure_native_slashes(path_str: str) -> str:
|
||||
"""
|
||||
Ensure a path uses the native separator for the OS.
|
||||
|
||||
|
||||
Args:
|
||||
path_str: Path string
|
||||
|
||||
|
||||
Returns:
|
||||
Path with native separators
|
||||
"""
|
||||
@ -137,6 +136,8 @@ def ensure_native_slashes(path_str: str) -> str:
|
||||
|
||||
|
||||
# Convenience functions for common operations
|
||||
|
||||
|
||||
def storage_path(path: Union[str, Path]) -> str:
|
||||
"""Convert path to storage format (forward slashes)."""
|
||||
return normalize_path(path)
|
||||
@ -149,4 +150,4 @@ def display_path(path: Union[str, Path]) -> str:
|
||||
|
||||
def from_storage_path(path_str: str) -> Path:
|
||||
"""Convert from storage format to Path object."""
|
||||
return denormalize_path(path_str)
|
||||
return denormalize_path(path_str)
|
||||
|
||||
@ -3,85 +3,87 @@ Performance monitoring for RAG system.
|
||||
Track loading times, query times, and resource usage.
|
||||
"""
|
||||
|
||||
import time
|
||||
import psutil
|
||||
import os
|
||||
from contextlib import contextmanager
|
||||
from typing import Dict, Any, Optional
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
from contextlib import contextmanager
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import psutil
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PerformanceMonitor:
|
||||
"""Track performance metrics for RAG operations."""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
self.metrics = {}
|
||||
self.process = psutil.Process(os.getpid())
|
||||
|
||||
|
||||
@contextmanager
|
||||
def measure(self, operation: str):
|
||||
"""Context manager to measure operation time and memory."""
|
||||
# Get initial state
|
||||
start_time = time.time()
|
||||
start_memory = self.process.memory_info().rss / 1024 / 1024 # MB
|
||||
|
||||
|
||||
try:
|
||||
yield self
|
||||
finally:
|
||||
# Calculate metrics
|
||||
end_time = time.time()
|
||||
end_memory = self.process.memory_info().rss / 1024 / 1024 # MB
|
||||
|
||||
|
||||
duration = end_time - start_time
|
||||
memory_delta = end_memory - start_memory
|
||||
|
||||
|
||||
# Store metrics
|
||||
self.metrics[operation] = {
|
||||
'duration_seconds': duration,
|
||||
'memory_delta_mb': memory_delta,
|
||||
'final_memory_mb': end_memory,
|
||||
"duration_seconds": duration,
|
||||
"memory_delta_mb": memory_delta,
|
||||
"final_memory_mb": end_memory,
|
||||
}
|
||||
|
||||
|
||||
logger.info(
|
||||
f"[PERF] {operation}: {duration:.2f}s, "
|
||||
f"Memory: {end_memory:.1f}MB (+{memory_delta:+.1f}MB)"
|
||||
)
|
||||
|
||||
|
||||
def get_summary(self) -> Dict[str, Any]:
|
||||
"""Get performance summary."""
|
||||
total_time = sum(m['duration_seconds'] for m in self.metrics.values())
|
||||
|
||||
total_time = sum(m["duration_seconds"] for m in self.metrics.values())
|
||||
|
||||
return {
|
||||
'total_time_seconds': total_time,
|
||||
'operations': self.metrics,
|
||||
'current_memory_mb': self.process.memory_info().rss / 1024 / 1024,
|
||||
"total_time_seconds": total_time,
|
||||
"operations": self.metrics,
|
||||
"current_memory_mb": self.process.memory_info().rss / 1024 / 1024,
|
||||
}
|
||||
|
||||
|
||||
def print_summary(self):
|
||||
"""Print a formatted summary."""
|
||||
print("\n" + "="*50)
|
||||
print("\n" + "=" * 50)
|
||||
print("PERFORMANCE SUMMARY")
|
||||
print("="*50)
|
||||
|
||||
print("=" * 50)
|
||||
|
||||
for op, metrics in self.metrics.items():
|
||||
print(f"\n{op}:")
|
||||
print(f" Time: {metrics['duration_seconds']:.2f}s")
|
||||
print(f" Memory: +{metrics['memory_delta_mb']:+.1f}MB")
|
||||
|
||||
|
||||
summary = self.get_summary()
|
||||
print(f"\nTotal Time: {summary['total_time_seconds']:.2f}s")
|
||||
print(f"Current Memory: {summary['current_memory_mb']:.1f}MB")
|
||||
print("="*50)
|
||||
print("=" * 50)
|
||||
|
||||
|
||||
# Global instance for easy access
|
||||
_monitor = None
|
||||
|
||||
|
||||
def get_monitor() -> PerformanceMonitor:
|
||||
"""Get or create global monitor instance."""
|
||||
global _monitor
|
||||
if _monitor is None:
|
||||
_monitor = PerformanceMonitor()
|
||||
return _monitor
|
||||
return _monitor
|
||||
|
||||
@ -7,7 +7,7 @@ Automatically expands search queries to find more relevant results.
|
||||
|
||||
Example: "authentication" becomes "authentication login user verification credentials"
|
||||
|
||||
## How It Helps
|
||||
## How It Helps
|
||||
- 2-3x more relevant search results
|
||||
- Works with any content (code, docs, notes, etc.)
|
||||
- Completely transparent to users
|
||||
@ -26,22 +26,25 @@ expanded = expander.expand_query("error handling")
|
||||
# Result: "error handling exception try catch fault tolerance"
|
||||
```
|
||||
|
||||
Perfect for beginners - enable in TUI for exploration,
|
||||
Perfect for beginners - enable in TUI for exploration,
|
||||
disable in CLI for maximum speed.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import re
|
||||
import threading
|
||||
from typing import List, Optional
|
||||
from typing import Optional
|
||||
|
||||
import requests
|
||||
|
||||
from .config import RAGConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class QueryExpander:
|
||||
"""Expands search queries using LLM to improve search recall."""
|
||||
|
||||
|
||||
def __init__(self, config: RAGConfig):
|
||||
self.config = config
|
||||
self.ollama_url = f"http://{config.llm.ollama_host}"
|
||||
@ -49,37 +52,37 @@ class QueryExpander:
|
||||
self.max_terms = config.llm.max_expansion_terms
|
||||
self.enabled = config.search.expand_queries
|
||||
self._initialized = False
|
||||
|
||||
|
||||
# Cache for expanded queries to avoid repeated API calls
|
||||
self._cache = {}
|
||||
self._cache_lock = threading.RLock() # Thread-safe cache access
|
||||
|
||||
|
||||
def _ensure_initialized(self):
|
||||
"""Lazy initialization with LLM warmup."""
|
||||
if self._initialized:
|
||||
return
|
||||
|
||||
|
||||
# Skip warmup - causes startup delays and unwanted model calls
|
||||
# Query expansion works fine on first use without warmup
|
||||
|
||||
|
||||
self._initialized = True
|
||||
|
||||
|
||||
def expand_query(self, query: str) -> str:
|
||||
"""Expand a search query with related terms."""
|
||||
if not self.enabled or not query.strip():
|
||||
return query
|
||||
|
||||
|
||||
self._ensure_initialized()
|
||||
|
||||
|
||||
# Check cache first (thread-safe)
|
||||
with self._cache_lock:
|
||||
if query in self._cache:
|
||||
return self._cache[query]
|
||||
|
||||
|
||||
# Don't expand very short queries or obvious keywords
|
||||
if len(query.split()) <= 1 or len(query) <= 3:
|
||||
return query
|
||||
|
||||
|
||||
try:
|
||||
expanded = self._llm_expand_query(query)
|
||||
if expanded and expanded != query:
|
||||
@ -91,23 +94,23 @@ class QueryExpander:
|
||||
self._manage_cache_size()
|
||||
logger.info(f"Expanded query: '{query}' → '{expanded}'")
|
||||
return expanded
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Query expansion failed: {e}")
|
||||
|
||||
|
||||
# Return original query if expansion fails
|
||||
return query
|
||||
|
||||
|
||||
def _llm_expand_query(self, query: str) -> Optional[str]:
|
||||
"""Use LLM to expand the query with related terms."""
|
||||
|
||||
|
||||
# Use best available model
|
||||
model_to_use = self._select_expansion_model()
|
||||
if not model_to_use:
|
||||
return None
|
||||
|
||||
|
||||
# Create expansion prompt
|
||||
prompt = f"""You are a search query expert. Expand the following search query with {self.max_terms} additional related terms that would help find relevant content.
|
||||
prompt = """You are a search query expert. Expand the following search query with {self.max_terms} additional related terms that would help find relevant content.
|
||||
|
||||
Original query: "{query}"
|
||||
|
||||
@ -134,95 +137,99 @@ Expanded query:"""
|
||||
"options": {
|
||||
"temperature": 0.1, # Very low temperature for consistent expansions
|
||||
"top_p": 0.8,
|
||||
"max_tokens": 100 # Keep it short
|
||||
}
|
||||
"max_tokens": 100, # Keep it short
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
response = requests.post(
|
||||
f"{self.ollama_url}/api/generate",
|
||||
json=payload,
|
||||
timeout=10 # Quick timeout for low latency
|
||||
timeout=10, # Quick timeout for low latency
|
||||
)
|
||||
|
||||
|
||||
if response.status_code == 200:
|
||||
result = response.json().get('response', '').strip()
|
||||
|
||||
result = response.json().get("response", "").strip()
|
||||
|
||||
# Clean up the response - extract just the expanded query
|
||||
expanded = self._clean_expansion(result, query)
|
||||
return expanded
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"LLM expansion failed: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def _select_expansion_model(self) -> Optional[str]:
|
||||
"""Select the best available model for query expansion."""
|
||||
|
||||
|
||||
if self.model != "auto":
|
||||
return self.model
|
||||
|
||||
|
||||
try:
|
||||
# Get available models
|
||||
response = requests.get(f"{self.ollama_url}/api/tags", timeout=5)
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
available = [model['name'] for model in data.get('models', [])]
|
||||
|
||||
available = [model["name"] for model in data.get("models", [])]
|
||||
|
||||
# Use same model rankings as main synthesizer for consistency
|
||||
expansion_preferences = [
|
||||
"qwen3:1.7b", "qwen3:0.6b", "qwen3:4b", "qwen2.5:3b",
|
||||
"qwen2.5:1.5b", "qwen2.5-coder:1.5b"
|
||||
"qwen3:1.7b",
|
||||
"qwen3:0.6b",
|
||||
"qwen3:4b",
|
||||
"qwen2.5:3b",
|
||||
"qwen2.5:1.5b",
|
||||
"qwen2.5-coder:1.5b",
|
||||
]
|
||||
|
||||
|
||||
for preferred in expansion_preferences:
|
||||
for available_model in available:
|
||||
if preferred in available_model:
|
||||
logger.debug(f"Using {available_model} for query expansion")
|
||||
return available_model
|
||||
|
||||
|
||||
# Fallback to first available model
|
||||
if available:
|
||||
return available[0]
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not select expansion model: {e}")
|
||||
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def _clean_expansion(self, raw_response: str, original_query: str) -> str:
|
||||
"""Clean the LLM response to extract just the expanded query."""
|
||||
|
||||
|
||||
# Remove common response artifacts
|
||||
clean_response = raw_response.strip()
|
||||
|
||||
|
||||
# Remove quotes if the entire response is quoted
|
||||
if clean_response.startswith('"') and clean_response.endswith('"'):
|
||||
clean_response = clean_response[1:-1]
|
||||
|
||||
|
||||
# Take only the first line if multiline
|
||||
clean_response = clean_response.split('\n')[0].strip()
|
||||
|
||||
clean_response = clean_response.split("\n")[0].strip()
|
||||
|
||||
# Remove excessive punctuation and normalize spaces
|
||||
clean_response = re.sub(r'[^\w\s-]', ' ', clean_response)
|
||||
clean_response = re.sub(r'\s+', ' ', clean_response).strip()
|
||||
|
||||
clean_response = re.sub(r"[^\w\s-]", " ", clean_response)
|
||||
clean_response = re.sub(r"\s+", " ", clean_response).strip()
|
||||
|
||||
# Ensure it starts with the original query
|
||||
if not clean_response.lower().startswith(original_query.lower()):
|
||||
clean_response = f"{original_query} {clean_response}"
|
||||
|
||||
|
||||
# Limit the total length to avoid very long queries
|
||||
words = clean_response.split()
|
||||
if len(words) > len(original_query.split()) + self.max_terms:
|
||||
words = words[:len(original_query.split()) + self.max_terms]
|
||||
clean_response = ' '.join(words)
|
||||
|
||||
words = words[: len(original_query.split()) + self.max_terms]
|
||||
clean_response = " ".join(words)
|
||||
|
||||
return clean_response
|
||||
|
||||
|
||||
def clear_cache(self):
|
||||
"""Clear the expansion cache (thread-safe)."""
|
||||
with self._cache_lock:
|
||||
self._cache.clear()
|
||||
|
||||
|
||||
def _manage_cache_size(self, max_size: int = 1000):
|
||||
"""Keep cache from growing too large (prevents memory leaks)."""
|
||||
with self._cache_lock:
|
||||
@ -232,45 +239,49 @@ Expanded query:"""
|
||||
keep_count = max_size // 2
|
||||
self._cache = dict(items[-keep_count:])
|
||||
logger.debug(f"Cache trimmed from {len(items)} to {len(self._cache)} entries")
|
||||
|
||||
|
||||
def is_available(self) -> bool:
|
||||
"""Check if query expansion is available."""
|
||||
if not self.enabled:
|
||||
return False
|
||||
|
||||
|
||||
self._ensure_initialized()
|
||||
try:
|
||||
response = requests.get(f"{self.ollama_url}/api/tags", timeout=5)
|
||||
return response.status_code == 200
|
||||
except:
|
||||
except (ConnectionError, TimeoutError, requests.RequestException):
|
||||
return False
|
||||
|
||||
|
||||
# Quick test function
|
||||
|
||||
|
||||
def test_expansion():
|
||||
"""Test the query expander."""
|
||||
from .config import RAGConfig
|
||||
|
||||
|
||||
config = RAGConfig()
|
||||
config.search.expand_queries = True
|
||||
config.llm.max_expansion_terms = 6
|
||||
|
||||
|
||||
expander = QueryExpander(config)
|
||||
|
||||
|
||||
if not expander.is_available():
|
||||
print("❌ Ollama not available for testing")
|
||||
return
|
||||
|
||||
|
||||
test_queries = [
|
||||
"authentication",
|
||||
"error handling",
|
||||
"error handling",
|
||||
"database query",
|
||||
"user interface"
|
||||
"user interface",
|
||||
]
|
||||
|
||||
|
||||
print("🔍 Testing Query Expansion:")
|
||||
for query in test_queries:
|
||||
expanded = expander.expand_query(query)
|
||||
print(f" '{query}' → '{expanded}'")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_expansion()
|
||||
test_expansion()
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@ -4,30 +4,30 @@ No more loading/unloading madness!
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import socket
|
||||
import subprocess
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any, Optional
|
||||
import logging
|
||||
import sys
|
||||
import os
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
# Fix Windows console
|
||||
if sys.platform == 'win32':
|
||||
os.environ['PYTHONUTF8'] = '1'
|
||||
if sys.platform == "win32":
|
||||
os.environ["PYTHONUTF8"] = "1"
|
||||
|
||||
from .search import CodeSearcher
|
||||
from .ollama_embeddings import OllamaEmbedder as CodeEmbedder
|
||||
from .performance import PerformanceMonitor
|
||||
from .search import CodeSearcher
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RAGServer:
|
||||
"""Persistent server that keeps embeddings and DB loaded."""
|
||||
|
||||
|
||||
def __init__(self, project_path: Path, port: int = 7777):
|
||||
self.project_path = project_path
|
||||
self.port = port
|
||||
@ -37,37 +37,36 @@ class RAGServer:
|
||||
self.socket = None
|
||||
self.start_time = None
|
||||
self.query_count = 0
|
||||
|
||||
|
||||
def _kill_existing_server(self):
|
||||
"""Kill any existing process using our port."""
|
||||
try:
|
||||
# Check if port is in use
|
||||
test_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
result = test_sock.connect_ex(('localhost', self.port))
|
||||
result = test_sock.connect_ex(("localhost", self.port))
|
||||
test_sock.close()
|
||||
|
||||
|
||||
if result == 0: # Port is in use
|
||||
print(f"️ Port {self.port} is already in use, attempting to free it...")
|
||||
|
||||
if sys.platform == 'win32':
|
||||
|
||||
if sys.platform == "win32":
|
||||
# Windows: Find and kill process using netstat
|
||||
import subprocess
|
||||
|
||||
try:
|
||||
# Get process ID using the port
|
||||
result = subprocess.run(
|
||||
['netstat', '-ano'],
|
||||
capture_output=True,
|
||||
text=True
|
||||
["netstat", "-ano"], capture_output=True, text=True
|
||||
)
|
||||
|
||||
for line in result.stdout.split('\n'):
|
||||
if f':{self.port}' in line and 'LISTENING' in line:
|
||||
|
||||
for line in result.stdout.split("\n"):
|
||||
if f":{self.port}" in line and "LISTENING" in line:
|
||||
parts = line.split()
|
||||
pid = parts[-1]
|
||||
print(f" Found process {pid} using port {self.port}")
|
||||
|
||||
|
||||
# Kill the process
|
||||
subprocess.run(['taskkill', '//PID', pid, '//F'], check=False)
|
||||
subprocess.run(["taskkill", "//PID", pid, "//F"], check=False)
|
||||
print(f" Killed process {pid}")
|
||||
time.sleep(1) # Give it a moment to release the port
|
||||
break
|
||||
@ -76,15 +75,16 @@ class RAGServer:
|
||||
else:
|
||||
# Unix/Linux: Use lsof and kill
|
||||
import subprocess
|
||||
|
||||
try:
|
||||
result = subprocess.run(
|
||||
['lsof', '-ti', f':{self.port}'],
|
||||
capture_output=True,
|
||||
text=True
|
||||
["lso", "-ti", f":{self.port}"],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
)
|
||||
if result.stdout.strip():
|
||||
pid = result.stdout.strip()
|
||||
subprocess.run(['kill', '-9', pid], check=False)
|
||||
subprocess.run(["kill", "-9", pid], check=False)
|
||||
print(f" Killed process {pid}")
|
||||
time.sleep(1)
|
||||
except Exception as e:
|
||||
@ -92,38 +92,38 @@ class RAGServer:
|
||||
except Exception as e:
|
||||
# Non-critical error, just log it
|
||||
logger.debug(f"Error checking port: {e}")
|
||||
|
||||
|
||||
def start(self):
|
||||
"""Start the RAG server."""
|
||||
# Kill any existing process on our port first
|
||||
self._kill_existing_server()
|
||||
|
||||
|
||||
print(f" Starting RAG server on port {self.port}...")
|
||||
|
||||
|
||||
# Load everything once
|
||||
perf = PerformanceMonitor()
|
||||
|
||||
|
||||
with perf.measure("Load Embedder"):
|
||||
self.embedder = CodeEmbedder()
|
||||
|
||||
|
||||
with perf.measure("Connect Database"):
|
||||
self.searcher = CodeSearcher(self.project_path, embedder=self.embedder)
|
||||
|
||||
|
||||
perf.print_summary()
|
||||
|
||||
|
||||
# Start server
|
||||
self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
|
||||
self.socket.bind(('localhost', self.port))
|
||||
self.socket.bind(("localhost", self.port))
|
||||
self.socket.listen(5)
|
||||
|
||||
|
||||
self.running = True
|
||||
self.start_time = time.time()
|
||||
|
||||
|
||||
print(f"\n RAG server ready on localhost:{self.port}")
|
||||
print(" Model loaded, database connected")
|
||||
print(" Waiting for queries...\n")
|
||||
|
||||
|
||||
# Handle connections
|
||||
while self.running:
|
||||
try:
|
||||
@ -136,50 +136,50 @@ class RAGServer:
|
||||
except Exception as e:
|
||||
if self.running:
|
||||
logger.error(f"Server error: {e}")
|
||||
|
||||
|
||||
def _handle_client(self, client: socket.socket):
|
||||
"""Handle a client connection."""
|
||||
try:
|
||||
# Receive query with proper message framing
|
||||
data = self._receive_json(client)
|
||||
request = json.loads(data)
|
||||
|
||||
|
||||
# Check for shutdown command
|
||||
if request.get('command') == 'shutdown':
|
||||
if request.get("command") == "shutdown":
|
||||
print("\n Shutdown requested")
|
||||
response = {'success': True, 'message': 'Server shutting down'}
|
||||
response = {"success": True, "message": "Server shutting down"}
|
||||
self._send_json(client, response)
|
||||
self.stop()
|
||||
return
|
||||
|
||||
query = request.get('query', '')
|
||||
top_k = request.get('top_k', 10)
|
||||
|
||||
|
||||
query = request.get("query", "")
|
||||
top_k = request.get("top_k", 10)
|
||||
|
||||
self.query_count += 1
|
||||
print(f"[Query #{self.query_count}] {query}")
|
||||
|
||||
|
||||
# Perform search
|
||||
start = time.time()
|
||||
results = self.searcher.search(query, top_k=top_k)
|
||||
search_time = time.time() - start
|
||||
|
||||
|
||||
# Prepare response
|
||||
response = {
|
||||
'success': True,
|
||||
'query': query,
|
||||
'count': len(results),
|
||||
'search_time_ms': int(search_time * 1000),
|
||||
'results': [r.to_dict() for r in results],
|
||||
'server_uptime': int(time.time() - self.start_time),
|
||||
'total_queries': self.query_count,
|
||||
"success": True,
|
||||
"query": query,
|
||||
"count": len(results),
|
||||
"search_time_ms": int(search_time * 1000),
|
||||
"results": [r.to_dict() for r in results],
|
||||
"server_uptime": int(time.time() - self.start_time),
|
||||
"total_queries": self.query_count,
|
||||
}
|
||||
|
||||
|
||||
# Send response with proper framing
|
||||
self._send_json(client, response)
|
||||
|
||||
|
||||
print(f" Found {len(results)} results in {search_time*1000:.0f}ms")
|
||||
|
||||
except ConnectionError as e:
|
||||
|
||||
except ConnectionError:
|
||||
# Normal disconnection - client closed connection
|
||||
# This is expected behavior, don't log as error
|
||||
pass
|
||||
@ -187,52 +187,49 @@ class RAGServer:
|
||||
# Only log actual errors, not normal disconnections
|
||||
if "Connection closed" not in str(e):
|
||||
logger.error(f"Client handler error: {e}")
|
||||
error_response = {
|
||||
'success': False,
|
||||
'error': str(e)
|
||||
}
|
||||
error_response = {"success": False, "error": str(e)}
|
||||
try:
|
||||
self._send_json(client, error_response)
|
||||
except:
|
||||
except (ConnectionError, OSError, TypeError, ValueError, socket.error):
|
||||
pass
|
||||
finally:
|
||||
client.close()
|
||||
|
||||
|
||||
def _receive_json(self, sock: socket.socket) -> str:
|
||||
"""Receive a complete JSON message with length prefix."""
|
||||
# First receive the length (4 bytes)
|
||||
length_data = b''
|
||||
length_data = b""
|
||||
while len(length_data) < 4:
|
||||
chunk = sock.recv(4 - len(length_data))
|
||||
if not chunk:
|
||||
raise ConnectionError("Connection closed while receiving length")
|
||||
length_data += chunk
|
||||
|
||||
length = int.from_bytes(length_data, 'big')
|
||||
|
||||
|
||||
length = int.from_bytes(length_data, "big")
|
||||
|
||||
# Now receive the actual data
|
||||
data = b''
|
||||
data = b""
|
||||
while len(data) < length:
|
||||
chunk = sock.recv(min(65536, length - len(data)))
|
||||
if not chunk:
|
||||
raise ConnectionError("Connection closed while receiving data")
|
||||
data += chunk
|
||||
|
||||
return data.decode('utf-8')
|
||||
|
||||
|
||||
return data.decode("utf-8")
|
||||
|
||||
def _send_json(self, sock: socket.socket, data: dict):
|
||||
"""Send a JSON message with length prefix."""
|
||||
# Sanitize the data to ensure JSON compatibility
|
||||
json_str = json.dumps(data, ensure_ascii=False, separators=(',', ':'))
|
||||
json_bytes = json_str.encode('utf-8')
|
||||
|
||||
json_str = json.dumps(data, ensure_ascii=False, separators=(",", ":"))
|
||||
json_bytes = json_str.encode("utf-8")
|
||||
|
||||
# Send length prefix (4 bytes)
|
||||
length = len(json_bytes)
|
||||
sock.send(length.to_bytes(4, 'big'))
|
||||
|
||||
sock.send(length.to_bytes(4, "big"))
|
||||
|
||||
# Send the data
|
||||
sock.sendall(json_bytes)
|
||||
|
||||
|
||||
def stop(self):
|
||||
"""Stop the server."""
|
||||
self.running = False
|
||||
@ -243,101 +240,89 @@ class RAGServer:
|
||||
|
||||
class RAGClient:
|
||||
"""Client to communicate with RAG server."""
|
||||
|
||||
|
||||
def __init__(self, port: int = 7777):
|
||||
self.port = port
|
||||
self.use_legacy = False
|
||||
|
||||
|
||||
def search(self, query: str, top_k: int = 10) -> Dict[str, Any]:
|
||||
"""Send search query to server."""
|
||||
try:
|
||||
# Connect to server
|
||||
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
sock.connect(('localhost', self.port))
|
||||
|
||||
sock.connect(("localhost", self.port))
|
||||
|
||||
# Send request with proper framing
|
||||
request = {
|
||||
'query': query,
|
||||
'top_k': top_k
|
||||
}
|
||||
request = {"query": query, "top_k": top_k}
|
||||
self._send_json(sock, request)
|
||||
|
||||
|
||||
# Receive response with proper framing
|
||||
data = self._receive_json(sock)
|
||||
response = json.loads(data)
|
||||
|
||||
|
||||
sock.close()
|
||||
return response
|
||||
|
||||
|
||||
except ConnectionRefusedError:
|
||||
return {
|
||||
'success': False,
|
||||
'error': 'RAG server not running. Start with: rag-mini server'
|
||||
"success": False,
|
||||
"error": "RAG server not running. Start with: rag-mini server",
|
||||
}
|
||||
except ConnectionError as e:
|
||||
# Try legacy mode without message framing
|
||||
if not self.use_legacy and "receiving length" in str(e):
|
||||
self.use_legacy = True
|
||||
return self._search_legacy(query, top_k)
|
||||
return {
|
||||
'success': False,
|
||||
'error': str(e)
|
||||
}
|
||||
return {"success": False, "error": str(e)}
|
||||
except Exception as e:
|
||||
return {
|
||||
'success': False,
|
||||
'error': str(e)
|
||||
}
|
||||
|
||||
return {"success": False, "error": str(e)}
|
||||
|
||||
def _receive_json(self, sock: socket.socket) -> str:
|
||||
"""Receive a complete JSON message with length prefix."""
|
||||
# First receive the length (4 bytes)
|
||||
length_data = b''
|
||||
length_data = b""
|
||||
while len(length_data) < 4:
|
||||
chunk = sock.recv(4 - len(length_data))
|
||||
if not chunk:
|
||||
raise ConnectionError("Connection closed while receiving length")
|
||||
length_data += chunk
|
||||
|
||||
length = int.from_bytes(length_data, 'big')
|
||||
|
||||
|
||||
length = int.from_bytes(length_data, "big")
|
||||
|
||||
# Now receive the actual data
|
||||
data = b''
|
||||
data = b""
|
||||
while len(data) < length:
|
||||
chunk = sock.recv(min(65536, length - len(data)))
|
||||
if not chunk:
|
||||
raise ConnectionError("Connection closed while receiving data")
|
||||
data += chunk
|
||||
|
||||
return data.decode('utf-8')
|
||||
|
||||
|
||||
return data.decode("utf-8")
|
||||
|
||||
def _send_json(self, sock: socket.socket, data: dict):
|
||||
"""Send a JSON message with length prefix."""
|
||||
json_str = json.dumps(data, ensure_ascii=False, separators=(',', ':'))
|
||||
json_bytes = json_str.encode('utf-8')
|
||||
|
||||
json_str = json.dumps(data, ensure_ascii=False, separators=(",", ":"))
|
||||
json_bytes = json_str.encode("utf-8")
|
||||
|
||||
# Send length prefix (4 bytes)
|
||||
length = len(json_bytes)
|
||||
sock.send(length.to_bytes(4, 'big'))
|
||||
|
||||
sock.send(length.to_bytes(4, "big"))
|
||||
|
||||
# Send the data
|
||||
sock.sendall(json_bytes)
|
||||
|
||||
|
||||
def _search_legacy(self, query: str, top_k: int = 10) -> Dict[str, Any]:
|
||||
"""Legacy search without message framing for old servers."""
|
||||
try:
|
||||
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
sock.connect(('localhost', self.port))
|
||||
|
||||
sock.connect(("localhost", self.port))
|
||||
|
||||
# Send request (old way)
|
||||
request = {
|
||||
'query': query,
|
||||
'top_k': top_k
|
||||
}
|
||||
sock.send(json.dumps(request).encode('utf-8'))
|
||||
|
||||
request = {"query": query, "top_k": top_k}
|
||||
sock.send(json.dumps(request).encode("utf-8"))
|
||||
|
||||
# Receive response (accumulate until we get valid JSON)
|
||||
data = b''
|
||||
data = b""
|
||||
while True:
|
||||
chunk = sock.recv(65536)
|
||||
if not chunk:
|
||||
@ -345,32 +330,26 @@ class RAGClient:
|
||||
data += chunk
|
||||
try:
|
||||
# Try to decode as JSON
|
||||
response = json.loads(data.decode('utf-8'))
|
||||
response = json.loads(data.decode("utf-8"))
|
||||
sock.close()
|
||||
return response
|
||||
except json.JSONDecodeError:
|
||||
# Keep receiving
|
||||
continue
|
||||
|
||||
|
||||
sock.close()
|
||||
return {
|
||||
'success': False,
|
||||
'error': 'Incomplete response from server'
|
||||
}
|
||||
return {"success": False, "error": "Incomplete response from server"}
|
||||
except Exception as e:
|
||||
return {
|
||||
'success': False,
|
||||
'error': str(e)
|
||||
}
|
||||
|
||||
return {"success": False, "error": str(e)}
|
||||
|
||||
def is_running(self) -> bool:
|
||||
"""Check if server is running."""
|
||||
try:
|
||||
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
result = sock.connect_ex(('localhost', self.port))
|
||||
result = sock.connect_ex(("localhost", self.port))
|
||||
sock.close()
|
||||
return result == 0
|
||||
except:
|
||||
except (ConnectionError, OSError, TypeError, ValueError, socket.error):
|
||||
return False
|
||||
|
||||
|
||||
@ -389,23 +368,31 @@ def auto_start_if_needed(project_path: Path) -> Optional[subprocess.Popen]:
|
||||
if not client.is_running():
|
||||
# Start server in background
|
||||
import subprocess
|
||||
cmd = [sys.executable, "-m", "mini_rag.cli", "server", "--path", str(project_path)]
|
||||
|
||||
cmd = [
|
||||
sys.executable,
|
||||
"-m",
|
||||
"mini_rag.cli",
|
||||
"server",
|
||||
"--path",
|
||||
str(project_path),
|
||||
]
|
||||
process = subprocess.Popen(
|
||||
cmd,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
creationflags=subprocess.CREATE_NEW_CONSOLE if sys.platform == 'win32' else 0
|
||||
creationflags=(subprocess.CREATE_NEW_CONSOLE if sys.platform == "win32" else 0),
|
||||
)
|
||||
|
||||
|
||||
# Wait for server to start
|
||||
for _ in range(30): # 30 second timeout
|
||||
time.sleep(1)
|
||||
if client.is_running():
|
||||
print(" RAG server started automatically")
|
||||
return process
|
||||
|
||||
|
||||
# Failed to start
|
||||
process.terminate()
|
||||
raise RuntimeError("Failed to start RAG server")
|
||||
|
||||
return None
|
||||
|
||||
return None
|
||||
|
||||
@ -3,148 +3,140 @@ Smart language-aware chunking strategies for FSS-Mini-RAG.
|
||||
Automatically adapts chunking based on file type and content patterns.
|
||||
"""
|
||||
|
||||
from typing import Dict, Any, List
|
||||
from pathlib import Path
|
||||
import json
|
||||
from typing import Any, Dict, List
|
||||
|
||||
|
||||
class SmartChunkingStrategy:
|
||||
"""Intelligent chunking that adapts to file types and content."""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
self.language_configs = {
|
||||
'python': {
|
||||
'max_size': 3000, # Larger for better function context
|
||||
'min_size': 200,
|
||||
'strategy': 'function',
|
||||
'prefer_semantic': True
|
||||
"python": {
|
||||
"max_size": 3000, # Larger for better function context
|
||||
"min_size": 200,
|
||||
"strategy": "function",
|
||||
"prefer_semantic": True,
|
||||
},
|
||||
'javascript': {
|
||||
'max_size': 2500,
|
||||
'min_size': 150,
|
||||
'strategy': 'function',
|
||||
'prefer_semantic': True
|
||||
"javascript": {
|
||||
"max_size": 2500,
|
||||
"min_size": 150,
|
||||
"strategy": "function",
|
||||
"prefer_semantic": True,
|
||||
},
|
||||
'markdown': {
|
||||
'max_size': 2500,
|
||||
'min_size': 300, # Larger minimum for complete thoughts
|
||||
'strategy': 'header',
|
||||
'preserve_structure': True
|
||||
"markdown": {
|
||||
"max_size": 2500,
|
||||
"min_size": 300, # Larger minimum for complete thoughts
|
||||
"strategy": "header",
|
||||
"preserve_structure": True,
|
||||
},
|
||||
'json': {
|
||||
'max_size': 1000, # Smaller for config files
|
||||
'min_size': 50,
|
||||
'skip_if_large': True, # Skip huge config JSONs
|
||||
'max_file_size': 50000 # 50KB limit
|
||||
"json": {
|
||||
"max_size": 1000, # Smaller for config files
|
||||
"min_size": 50,
|
||||
"skip_if_large": True, # Skip huge config JSONs
|
||||
"max_file_size": 50000, # 50KB limit
|
||||
},
|
||||
'yaml': {
|
||||
'max_size': 1500,
|
||||
'min_size': 100,
|
||||
'strategy': 'key_block'
|
||||
},
|
||||
'text': {
|
||||
'max_size': 2000,
|
||||
'min_size': 200,
|
||||
'strategy': 'paragraph'
|
||||
},
|
||||
'bash': {
|
||||
'max_size': 1500,
|
||||
'min_size': 100,
|
||||
'strategy': 'function'
|
||||
}
|
||||
"yaml": {"max_size": 1500, "min_size": 100, "strategy": "key_block"},
|
||||
"text": {"max_size": 2000, "min_size": 200, "strategy": "paragraph"},
|
||||
"bash": {"max_size": 1500, "min_size": 100, "strategy": "function"},
|
||||
}
|
||||
|
||||
|
||||
# Smart defaults for unknown languages
|
||||
self.default_config = {
|
||||
'max_size': 2000,
|
||||
'min_size': 150,
|
||||
'strategy': 'semantic'
|
||||
"max_size": 2000,
|
||||
"min_size": 150,
|
||||
"strategy": "semantic",
|
||||
}
|
||||
|
||||
|
||||
def get_config_for_language(self, language: str, file_size: int = 0) -> Dict[str, Any]:
|
||||
"""Get optimal chunking config for a specific language."""
|
||||
config = self.language_configs.get(language, self.default_config).copy()
|
||||
|
||||
|
||||
# Smart adjustments based on file size
|
||||
if file_size > 0:
|
||||
if file_size < 500: # Very small files
|
||||
config['max_size'] = max(config['max_size'] // 2, 200)
|
||||
config['min_size'] = 50
|
||||
elif file_size > 20000: # Large files
|
||||
config['max_size'] = min(config['max_size'] + 1000, 4000)
|
||||
|
||||
config["max_size"] = max(config["max_size"] // 2, 200)
|
||||
config["min_size"] = 50
|
||||
elif file_size > 20000: # Large files
|
||||
config["max_size"] = min(config["max_size"] + 1000, 4000)
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def should_skip_file(self, language: str, file_size: int) -> bool:
|
||||
"""Determine if a file should be skipped entirely."""
|
||||
lang_config = self.language_configs.get(language, {})
|
||||
|
||||
|
||||
# Skip huge JSON config files
|
||||
if language == 'json' and lang_config.get('skip_if_large'):
|
||||
max_size = lang_config.get('max_file_size', 50000)
|
||||
if language == "json" and lang_config.get("skip_if_large"):
|
||||
max_size = lang_config.get("max_file_size", 50000)
|
||||
if file_size > max_size:
|
||||
return True
|
||||
|
||||
|
||||
# Skip tiny files that won't provide good context
|
||||
if file_size < 30:
|
||||
return True
|
||||
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def get_smart_defaults(self, project_stats: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Generate smart defaults based on project language distribution."""
|
||||
languages = project_stats.get('languages', {})
|
||||
total_files = sum(languages.values())
|
||||
|
||||
languages = project_stats.get("languages", {})
|
||||
# sum(languages.values()) # Unused variable removed
|
||||
|
||||
# Determine primary language
|
||||
primary_lang = max(languages.items(), key=lambda x: x[1])[0] if languages else 'python'
|
||||
primary_lang = max(languages.items(), key=lambda x: x[1])[0] if languages else "python"
|
||||
primary_config = self.language_configs.get(primary_lang, self.default_config)
|
||||
|
||||
|
||||
# Smart streaming threshold based on large files
|
||||
large_files = project_stats.get('large_files', 0)
|
||||
large_files = project_stats.get("large_files", 0)
|
||||
streaming_threshold = 5120 if large_files > 5 else 1048576 # 5KB vs 1MB
|
||||
|
||||
|
||||
return {
|
||||
"chunking": {
|
||||
"max_size": primary_config['max_size'],
|
||||
"min_size": primary_config['min_size'],
|
||||
"strategy": primary_config.get('strategy', 'semantic'),
|
||||
"max_size": primary_config["max_size"],
|
||||
"min_size": primary_config["min_size"],
|
||||
"strategy": primary_config.get("strategy", "semantic"),
|
||||
"language_specific": {
|
||||
lang: config for lang, config in self.language_configs.items()
|
||||
lang: config
|
||||
for lang, config in self.language_configs.items()
|
||||
if languages.get(lang, 0) > 0
|
||||
}
|
||||
},
|
||||
},
|
||||
"streaming": {
|
||||
"enabled": True,
|
||||
"threshold_bytes": streaming_threshold,
|
||||
"chunk_size_kb": 64
|
||||
"chunk_size_kb": 64,
|
||||
},
|
||||
"files": {
|
||||
"skip_tiny_files": True,
|
||||
"tiny_threshold": 30,
|
||||
"smart_json_filtering": True
|
||||
}
|
||||
"smart_json_filtering": True,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
# Example usage
|
||||
|
||||
|
||||
def analyze_and_suggest(manifest_data: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Analyze project and suggest optimal configuration."""
|
||||
from collections import Counter
|
||||
|
||||
files = manifest_data.get('files', {})
|
||||
|
||||
files = manifest_data.get("files", {})
|
||||
languages = Counter()
|
||||
large_files = 0
|
||||
|
||||
|
||||
for info in files.values():
|
||||
lang = info.get('language', 'unknown')
|
||||
lang = info.get("language", "unknown")
|
||||
languages[lang] += 1
|
||||
if info.get('size', 0) > 10000:
|
||||
if info.get("size", 0) > 10000:
|
||||
large_files += 1
|
||||
|
||||
|
||||
stats = {
|
||||
'languages': dict(languages),
|
||||
'large_files': large_files,
|
||||
'total_files': len(files)
|
||||
"languages": dict(languages),
|
||||
"large_files": large_files,
|
||||
"total_files": len(files),
|
||||
}
|
||||
|
||||
|
||||
strategy = SmartChunkingStrategy()
|
||||
return strategy.get_smart_defaults(stats)
|
||||
return strategy.get_smart_defaults(stats)
|
||||
|
||||
@ -7,22 +7,21 @@ context-aware assistance without compromising privacy.
|
||||
|
||||
import platform
|
||||
import sys
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional
|
||||
|
||||
|
||||
class SystemContextCollector:
|
||||
"""Collects system context information for enhanced LLM grounding."""
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_system_context(project_path: Optional[Path] = None) -> str:
|
||||
"""
|
||||
Get concise system context for LLM grounding.
|
||||
|
||||
|
||||
Args:
|
||||
project_path: Current project directory
|
||||
|
||||
|
||||
Returns:
|
||||
Formatted system context string (max 200 chars for privacy)
|
||||
"""
|
||||
@ -30,14 +29,12 @@ class SystemContextCollector:
|
||||
# Basic system info
|
||||
os_name = platform.system()
|
||||
python_ver = f"{sys.version_info.major}.{sys.version_info.minor}"
|
||||
|
||||
|
||||
# Simplified OS names
|
||||
os_short = {
|
||||
'Windows': 'Win',
|
||||
'Linux': 'Linux',
|
||||
'Darwin': 'macOS'
|
||||
}.get(os_name, os_name)
|
||||
|
||||
os_short = {"Windows": "Win", "Linux": "Linux", "Darwin": "macOS"}.get(
|
||||
os_name, os_name
|
||||
)
|
||||
|
||||
# Working directory info
|
||||
if project_path:
|
||||
# Use relative or shortened path for privacy
|
||||
@ -49,55 +46,55 @@ class SystemContextCollector:
|
||||
path_info = project_path.name
|
||||
else:
|
||||
path_info = Path.cwd().name
|
||||
|
||||
|
||||
# Trim path if too long for our 200-char limit
|
||||
if len(path_info) > 50:
|
||||
path_info = f".../{path_info[-45:]}"
|
||||
|
||||
|
||||
# Command style hints
|
||||
cmd_style = "rag.bat" if os_name == "Windows" else "./rag-mini"
|
||||
|
||||
|
||||
# Format concise context
|
||||
context = f"[{os_short} {python_ver}, {path_info}, use {cmd_style}]"
|
||||
|
||||
|
||||
# Ensure we stay under 200 chars
|
||||
if len(context) > 200:
|
||||
context = context[:197] + "...]"
|
||||
|
||||
|
||||
return context
|
||||
|
||||
|
||||
except Exception:
|
||||
# Fallback to minimal info if anything fails
|
||||
return f"[{platform.system()}, Python {sys.version_info.major}.{sys.version_info.minor}]"
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_command_context(os_name: Optional[str] = None) -> Dict[str, str]:
|
||||
"""
|
||||
Get OS-appropriate command examples.
|
||||
|
||||
|
||||
Returns:
|
||||
Dictionary with command patterns for the current OS
|
||||
"""
|
||||
if os_name is None:
|
||||
os_name = platform.system()
|
||||
|
||||
|
||||
if os_name == "Windows":
|
||||
return {
|
||||
"launcher": "rag.bat",
|
||||
"index": "rag.bat index C:\\path\\to\\project",
|
||||
"search": "rag.bat search C:\\path\\to\\project \"query\"",
|
||||
"search": 'rag.bat search C:\\path\\to\\project "query"',
|
||||
"explore": "rag.bat explore C:\\path\\to\\project",
|
||||
"path_sep": "\\",
|
||||
"example_path": "C:\\Users\\username\\Documents\\myproject"
|
||||
"example_path": "C:\\Users\\username\\Documents\\myproject",
|
||||
}
|
||||
else:
|
||||
return {
|
||||
"launcher": "./rag-mini",
|
||||
"index": "./rag-mini index /path/to/project",
|
||||
"search": "./rag-mini search /path/to/project \"query\"",
|
||||
"index": "./rag-mini index /path/to/project",
|
||||
"search": './rag-mini search /path/to/project "query"',
|
||||
"explore": "./rag-mini explore /path/to/project",
|
||||
"path_sep": "/",
|
||||
"example_path": "~/Documents/myproject"
|
||||
"example_path": "~/Documents/myproject",
|
||||
}
|
||||
|
||||
|
||||
@ -112,6 +109,7 @@ def get_command_context() -> Dict[str, str]:
|
||||
|
||||
|
||||
# Test function
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("System Context Test:")
|
||||
print(f"Context: {get_system_context()}")
|
||||
@ -120,4 +118,4 @@ if __name__ == "__main__":
|
||||
print("Command Context:")
|
||||
cmds = get_command_context()
|
||||
for key, value in cmds.items():
|
||||
print(f" {key}: {value}")
|
||||
print(f" {key}: {value}")
|
||||
|
||||
@ -6,30 +6,32 @@ Provides seamless GitHub-based updates with user-friendly interface.
|
||||
Checks for new releases, downloads updates, and handles installation safely.
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
import time
|
||||
import os
|
||||
import shutil
|
||||
import zipfile
|
||||
import tempfile
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
from typing import Optional, Dict, Any, Tuple
|
||||
from datetime import datetime, timedelta
|
||||
import sys
|
||||
import tempfile
|
||||
import zipfile
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
from typing import Optional, Tuple
|
||||
|
||||
try:
|
||||
import requests
|
||||
|
||||
REQUESTS_AVAILABLE = True
|
||||
except ImportError:
|
||||
REQUESTS_AVAILABLE = False
|
||||
|
||||
from .config import ConfigManager
|
||||
|
||||
|
||||
@dataclass
|
||||
class UpdateInfo:
|
||||
"""Information about an available update."""
|
||||
|
||||
version: str
|
||||
release_url: str
|
||||
download_url: str
|
||||
@ -37,42 +39,45 @@ class UpdateInfo:
|
||||
published_at: str
|
||||
is_newer: bool
|
||||
|
||||
|
||||
class UpdateChecker:
|
||||
"""
|
||||
Handles checking for and applying updates from GitHub releases.
|
||||
|
||||
|
||||
Features:
|
||||
- Checks GitHub API for latest releases
|
||||
- Downloads and applies updates safely with backup
|
||||
- Respects user preferences and rate limiting
|
||||
- Provides graceful fallbacks if network unavailable
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
repo_owner: str = "FSSCoding",
|
||||
repo_name: str = "Fss-Mini-Rag",
|
||||
current_version: str = "2.1.0"):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
repo_owner: str = "FSSCoding",
|
||||
repo_name: str = "Fss-Mini-Rag",
|
||||
current_version: str = "2.1.0",
|
||||
):
|
||||
self.repo_owner = repo_owner
|
||||
self.repo_name = repo_name
|
||||
self.current_version = current_version
|
||||
self.github_api_url = f"https://api.github.com/repos/{repo_owner}/{repo_name}"
|
||||
self.check_frequency_hours = 24 # Check once per day
|
||||
|
||||
|
||||
# Paths
|
||||
self.app_root = Path(__file__).parent.parent
|
||||
self.cache_file = self.app_root / ".update_cache.json"
|
||||
self.backup_dir = self.app_root / ".backup"
|
||||
|
||||
|
||||
# User preferences (graceful fallback if config unavailable)
|
||||
try:
|
||||
self.config = ConfigManager(self.app_root)
|
||||
except Exception:
|
||||
self.config = None
|
||||
|
||||
|
||||
def should_check_for_updates(self) -> bool:
|
||||
"""
|
||||
Determine if we should check for updates now.
|
||||
|
||||
|
||||
Respects:
|
||||
- User preference to disable updates
|
||||
- Rate limiting (once per day by default)
|
||||
@ -80,70 +85,74 @@ class UpdateChecker:
|
||||
"""
|
||||
if not REQUESTS_AVAILABLE:
|
||||
return False
|
||||
|
||||
|
||||
# Check user preference
|
||||
if hasattr(self.config, 'updates') and not getattr(self.config.updates, 'auto_check', True):
|
||||
if hasattr(self.config, "updates") and not getattr(
|
||||
self.config.updates, "auto_check", True
|
||||
):
|
||||
return False
|
||||
|
||||
|
||||
# Check if we've checked recently
|
||||
if self.cache_file.exists():
|
||||
try:
|
||||
with open(self.cache_file, 'r') as f:
|
||||
with open(self.cache_file, "r") as f:
|
||||
cache = json.load(f)
|
||||
last_check = datetime.fromisoformat(cache.get('last_check', '2020-01-01'))
|
||||
if datetime.now() - last_check < timedelta(hours=self.check_frequency_hours):
|
||||
last_check = datetime.fromisoformat(cache.get("last_check", "2020-01-01"))
|
||||
if datetime.now() - last_check < timedelta(
|
||||
hours=self.check_frequency_hours
|
||||
):
|
||||
return False
|
||||
except (json.JSONDecodeError, ValueError, KeyError):
|
||||
pass # Ignore cache errors, will check anyway
|
||||
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def check_for_updates(self) -> Optional[UpdateInfo]:
|
||||
"""
|
||||
Check GitHub API for the latest release.
|
||||
|
||||
|
||||
Returns:
|
||||
UpdateInfo if an update is available, None otherwise
|
||||
"""
|
||||
if not REQUESTS_AVAILABLE:
|
||||
return None
|
||||
|
||||
|
||||
try:
|
||||
# Get latest release from GitHub API
|
||||
response = requests.get(
|
||||
f"{self.github_api_url}/releases/latest",
|
||||
timeout=10,
|
||||
headers={"Accept": "application/vnd.github.v3+json"}
|
||||
headers={"Accept": "application/vnd.github.v3+json"},
|
||||
)
|
||||
|
||||
|
||||
if response.status_code != 200:
|
||||
return None
|
||||
|
||||
|
||||
release_data = response.json()
|
||||
|
||||
|
||||
# Extract version info
|
||||
latest_version = release_data.get('tag_name', '').lstrip('v')
|
||||
release_notes = release_data.get('body', 'No release notes available.')
|
||||
published_at = release_data.get('published_at', '')
|
||||
release_url = release_data.get('html_url', '')
|
||||
|
||||
latest_version = release_data.get("tag_name", "").lstrip("v")
|
||||
release_notes = release_data.get("body", "No release notes available.")
|
||||
published_at = release_data.get("published_at", "")
|
||||
release_url = release_data.get("html_url", "")
|
||||
|
||||
# Find download URL for source code
|
||||
download_url = None
|
||||
for asset in release_data.get('assets', []):
|
||||
if asset.get('name', '').endswith('.zip'):
|
||||
download_url = asset.get('browser_download_url')
|
||||
for asset in release_data.get("assets", []):
|
||||
if asset.get("name", "").endswith(".zip"):
|
||||
download_url = asset.get("browser_download_url")
|
||||
break
|
||||
|
||||
|
||||
# Fallback to source code zip
|
||||
if not download_url:
|
||||
download_url = f"https://github.com/{self.repo_owner}/{self.repo_name}/archive/refs/tags/v{latest_version}.zip"
|
||||
|
||||
|
||||
# Check if this is a newer version
|
||||
is_newer = self._is_version_newer(latest_version, self.current_version)
|
||||
|
||||
|
||||
# Update cache
|
||||
self._update_cache(latest_version, is_newer)
|
||||
|
||||
|
||||
if is_newer:
|
||||
return UpdateInfo(
|
||||
version=latest_version,
|
||||
@ -151,92 +160,95 @@ class UpdateChecker:
|
||||
download_url=download_url,
|
||||
release_notes=release_notes,
|
||||
published_at=published_at,
|
||||
is_newer=True
|
||||
is_newer=True,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
|
||||
except Exception:
|
||||
# Silently fail for network issues - don't interrupt user experience
|
||||
pass
|
||||
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def _is_version_newer(self, latest: str, current: str) -> bool:
|
||||
"""
|
||||
Compare version strings to determine if latest is newer.
|
||||
|
||||
|
||||
Simple semantic version comparison supporting:
|
||||
- Major.Minor.Patch (e.g., 2.1.0)
|
||||
- Major.Minor (e.g., 2.1)
|
||||
"""
|
||||
|
||||
def version_tuple(v):
|
||||
return tuple(map(int, (v.split("."))))
|
||||
|
||||
|
||||
try:
|
||||
return version_tuple(latest) > version_tuple(current)
|
||||
except (ValueError, AttributeError):
|
||||
# If version parsing fails, assume it's newer to be safe
|
||||
return latest != current
|
||||
|
||||
|
||||
def _update_cache(self, latest_version: str, is_newer: bool):
|
||||
"""Update the cache file with check results."""
|
||||
cache_data = {
|
||||
'last_check': datetime.now().isoformat(),
|
||||
'latest_version': latest_version,
|
||||
'is_newer': is_newer
|
||||
"last_check": datetime.now().isoformat(),
|
||||
"latest_version": latest_version,
|
||||
"is_newer": is_newer,
|
||||
}
|
||||
|
||||
|
||||
try:
|
||||
with open(self.cache_file, 'w') as f:
|
||||
with open(self.cache_file, "w") as f:
|
||||
json.dump(cache_data, f, indent=2)
|
||||
except Exception:
|
||||
pass # Ignore cache write errors
|
||||
|
||||
def download_update(self, update_info: UpdateInfo, progress_callback=None) -> Optional[Path]:
|
||||
|
||||
def download_update(
|
||||
self, update_info: UpdateInfo, progress_callback=None
|
||||
) -> Optional[Path]:
|
||||
"""
|
||||
Download the update package to a temporary location.
|
||||
|
||||
|
||||
Args:
|
||||
update_info: Information about the update to download
|
||||
progress_callback: Optional callback for progress updates
|
||||
|
||||
|
||||
Returns:
|
||||
Path to downloaded file, or None if download failed
|
||||
"""
|
||||
if not REQUESTS_AVAILABLE:
|
||||
return None
|
||||
|
||||
|
||||
try:
|
||||
# Create temporary file for download
|
||||
with tempfile.NamedTemporaryFile(suffix='.zip', delete=False) as tmp_file:
|
||||
with tempfile.NamedTemporaryFile(suffix=".zip", delete=False) as tmp_file:
|
||||
tmp_path = Path(tmp_file.name)
|
||||
|
||||
|
||||
# Download with progress tracking
|
||||
response = requests.get(update_info.download_url, stream=True, timeout=30)
|
||||
response.raise_for_status()
|
||||
|
||||
total_size = int(response.headers.get('content-length', 0))
|
||||
|
||||
total_size = int(response.headers.get("content-length", 0))
|
||||
downloaded = 0
|
||||
|
||||
with open(tmp_path, 'wb') as f:
|
||||
|
||||
with open(tmp_path, "wb") as f:
|
||||
for chunk in response.iter_content(chunk_size=8192):
|
||||
if chunk:
|
||||
f.write(chunk)
|
||||
downloaded += len(chunk)
|
||||
if progress_callback and total_size > 0:
|
||||
progress_callback(downloaded, total_size)
|
||||
|
||||
|
||||
return tmp_path
|
||||
|
||||
except Exception as e:
|
||||
|
||||
except Exception:
|
||||
# Clean up on error
|
||||
if 'tmp_path' in locals() and tmp_path.exists():
|
||||
if "tmp_path" in locals() and tmp_path.exists():
|
||||
tmp_path.unlink()
|
||||
return None
|
||||
|
||||
|
||||
def create_backup(self) -> bool:
|
||||
"""
|
||||
Create a backup of the current installation.
|
||||
|
||||
|
||||
Returns:
|
||||
True if backup created successfully
|
||||
"""
|
||||
@ -244,22 +256,22 @@ class UpdateChecker:
|
||||
# Remove old backup if it exists
|
||||
if self.backup_dir.exists():
|
||||
shutil.rmtree(self.backup_dir)
|
||||
|
||||
|
||||
# Create new backup
|
||||
self.backup_dir.mkdir(exist_ok=True)
|
||||
|
||||
|
||||
# Copy key files and directories
|
||||
important_items = [
|
||||
'mini_rag',
|
||||
'rag-mini.py',
|
||||
'rag-tui.py',
|
||||
'requirements.txt',
|
||||
'install_mini_rag.sh',
|
||||
'install_windows.bat',
|
||||
'README.md',
|
||||
'assets'
|
||||
"mini_rag",
|
||||
"rag-mini.py",
|
||||
"rag-tui.py",
|
||||
"requirements.txt",
|
||||
"install_mini_rag.sh",
|
||||
"install_windows.bat",
|
||||
"README.md",
|
||||
"assets",
|
||||
]
|
||||
|
||||
|
||||
for item in important_items:
|
||||
src = self.app_root / item
|
||||
if src.exists():
|
||||
@ -267,20 +279,20 @@ class UpdateChecker:
|
||||
shutil.copytree(src, self.backup_dir / item)
|
||||
else:
|
||||
shutil.copy2(src, self.backup_dir / item)
|
||||
|
||||
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def apply_update(self, update_package_path: Path, update_info: UpdateInfo) -> bool:
|
||||
"""
|
||||
Apply the downloaded update.
|
||||
|
||||
|
||||
Args:
|
||||
update_package_path: Path to the downloaded update package
|
||||
update_info: Information about the update
|
||||
|
||||
|
||||
Returns:
|
||||
True if update applied successfully
|
||||
"""
|
||||
@ -288,133 +300,133 @@ class UpdateChecker:
|
||||
# Extract to temporary directory first
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
tmp_path = Path(tmp_dir)
|
||||
|
||||
|
||||
# Extract the archive
|
||||
with zipfile.ZipFile(update_package_path, 'r') as zip_ref:
|
||||
with zipfile.ZipFile(update_package_path, "r") as zip_ref:
|
||||
zip_ref.extractall(tmp_path)
|
||||
|
||||
|
||||
# Find the extracted directory (may be nested)
|
||||
extracted_dirs = [d for d in tmp_path.iterdir() if d.is_dir()]
|
||||
if not extracted_dirs:
|
||||
return False
|
||||
|
||||
|
||||
source_dir = extracted_dirs[0]
|
||||
|
||||
|
||||
# Copy files to application directory
|
||||
important_items = [
|
||||
'mini_rag',
|
||||
'rag-mini.py',
|
||||
'rag-tui.py',
|
||||
'requirements.txt',
|
||||
'install_mini_rag.sh',
|
||||
'install_windows.bat',
|
||||
'README.md'
|
||||
"mini_rag",
|
||||
"rag-mini.py",
|
||||
"rag-tui.py",
|
||||
"requirements.txt",
|
||||
"install_mini_rag.sh",
|
||||
"install_windows.bat",
|
||||
"README.md",
|
||||
]
|
||||
|
||||
|
||||
for item in important_items:
|
||||
src = source_dir / item
|
||||
dst = self.app_root / item
|
||||
|
||||
|
||||
if src.exists():
|
||||
if dst.exists():
|
||||
if dst.is_dir():
|
||||
shutil.rmtree(dst)
|
||||
else:
|
||||
dst.unlink()
|
||||
|
||||
|
||||
if src.is_dir():
|
||||
shutil.copytree(src, dst)
|
||||
else:
|
||||
shutil.copy2(src, dst)
|
||||
|
||||
|
||||
# Update version info
|
||||
self._update_version_info(update_info.version)
|
||||
|
||||
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def _update_version_info(self, new_version: str):
|
||||
"""Update version information in the application."""
|
||||
# Update __init__.py version
|
||||
init_file = self.app_root / 'mini_rag' / '__init__.py'
|
||||
init_file = self.app_root / "mini_rag" / "__init__.py"
|
||||
if init_file.exists():
|
||||
try:
|
||||
content = init_file.read_text()
|
||||
updated_content = content.replace(
|
||||
f'__version__ = "{self.current_version}"',
|
||||
f'__version__ = "{new_version}"'
|
||||
f'__version__ = "{new_version}"',
|
||||
)
|
||||
init_file.write_text(updated_content)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
|
||||
def rollback_update(self) -> bool:
|
||||
"""
|
||||
Rollback to the backup version if update failed.
|
||||
|
||||
|
||||
Returns:
|
||||
True if rollback successful
|
||||
"""
|
||||
if not self.backup_dir.exists():
|
||||
return False
|
||||
|
||||
|
||||
try:
|
||||
# Restore from backup
|
||||
for item in self.backup_dir.iterdir():
|
||||
dst = self.app_root / item.name
|
||||
|
||||
|
||||
if dst.exists():
|
||||
if dst.is_dir():
|
||||
shutil.rmtree(dst)
|
||||
else:
|
||||
dst.unlink()
|
||||
|
||||
|
||||
if item.is_dir():
|
||||
shutil.copytree(item, dst)
|
||||
else:
|
||||
shutil.copy2(item, dst)
|
||||
|
||||
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def restart_application(self):
|
||||
"""Restart the application after update."""
|
||||
try:
|
||||
# Get the current script path
|
||||
current_script = sys.argv[0]
|
||||
|
||||
# sys.argv[0] # Unused variable removed
|
||||
|
||||
# Restart with the same arguments
|
||||
if sys.platform.startswith('win'):
|
||||
if sys.platform.startswith("win"):
|
||||
# Windows
|
||||
subprocess.Popen([sys.executable] + sys.argv)
|
||||
else:
|
||||
# Unix-like systems
|
||||
os.execv(sys.executable, [sys.executable] + sys.argv)
|
||||
|
||||
except Exception as e:
|
||||
|
||||
except Exception:
|
||||
# If restart fails, just exit gracefully
|
||||
print(f"\n✅ Update complete! Please restart the application manually.")
|
||||
print("\n✅ Update complete! Please restart the application manually.")
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
def get_legacy_notification() -> Optional[str]:
|
||||
"""
|
||||
Check if this is a legacy version that needs urgent notification.
|
||||
|
||||
|
||||
For users who downloaded before the auto-update system.
|
||||
"""
|
||||
try:
|
||||
# Check if this is a very old version by looking for cache file
|
||||
# Old versions won't have update cache, so we can detect them
|
||||
app_root = Path(__file__).parent.parent
|
||||
cache_file = app_root / ".update_cache.json"
|
||||
|
||||
# app_root / ".update_cache.json" # Unused variable removed
|
||||
|
||||
# Also check version in __init__.py to see if it's old
|
||||
init_file = app_root / 'mini_rag' / '__init__.py'
|
||||
init_file = app_root / "mini_rag" / "__init__.py"
|
||||
if init_file.exists():
|
||||
content = init_file.read_text()
|
||||
if '__version__ = "2.0.' in content or '__version__ = "1.' in content:
|
||||
@ -424,7 +436,7 @@ def get_legacy_notification() -> Optional[str]:
|
||||
Your version of FSS-Mini-RAG is missing critical updates!
|
||||
|
||||
🔧 Recent improvements include:
|
||||
• Fixed LLM response formatting issues
|
||||
• Fixed LLM response formatting issues
|
||||
• Added context window configuration
|
||||
• Improved Windows installer reliability
|
||||
• Added auto-update system (this notification!)
|
||||
@ -436,26 +448,28 @@ Your version of FSS-Mini-RAG is missing critical updates!
|
||||
"""
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
|
||||
return None
|
||||
|
||||
|
||||
# Global convenience functions
|
||||
_updater_instance = None
|
||||
|
||||
|
||||
def check_for_updates() -> Optional[UpdateInfo]:
|
||||
"""Global function to check for updates."""
|
||||
global _updater_instance
|
||||
if _updater_instance is None:
|
||||
_updater_instance = UpdateChecker()
|
||||
|
||||
|
||||
if _updater_instance.should_check_for_updates():
|
||||
return _updater_instance.check_for_updates()
|
||||
return None
|
||||
|
||||
|
||||
def get_updater() -> UpdateChecker:
|
||||
"""Get the global updater instance."""
|
||||
global _updater_instance
|
||||
if _updater_instance is None:
|
||||
_updater_instance = UpdateChecker()
|
||||
return _updater_instance
|
||||
return _updater_instance
|
||||
|
||||
@ -4,64 +4,70 @@ Virtual Environment Checker
|
||||
Ensures scripts run in proper Python virtual environment for consistency and safety.
|
||||
"""
|
||||
|
||||
import sys
|
||||
import os
|
||||
import sysconfig
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def is_in_virtualenv() -> bool:
|
||||
"""Check if we're running in a virtual environment."""
|
||||
# Check for virtual environment indicators
|
||||
return (
|
||||
hasattr(sys, 'real_prefix') or # virtualenv
|
||||
(hasattr(sys, 'base_prefix') and sys.base_prefix != sys.prefix) or # venv/pyvenv
|
||||
os.environ.get('VIRTUAL_ENV') is not None # Environment variable
|
||||
hasattr(sys, "real_prefix")
|
||||
or (hasattr(sys, "base_prefix") and sys.base_prefix != sys.prefix) # virtualenv
|
||||
or os.environ.get("VIRTUAL_ENV") is not None # venv/pyvenv # Environment variable
|
||||
)
|
||||
|
||||
|
||||
def get_expected_venv_path() -> Path:
|
||||
"""Get the expected virtual environment path for this project."""
|
||||
# Assume .venv in the same directory as the script
|
||||
script_dir = Path(__file__).parent.parent
|
||||
return script_dir / '.venv'
|
||||
return script_dir / ".venv"
|
||||
|
||||
|
||||
def check_correct_venv() -> tuple[bool, str]:
|
||||
"""
|
||||
Check if we're in the correct virtual environment.
|
||||
|
||||
|
||||
Returns:
|
||||
(is_correct, message)
|
||||
"""
|
||||
if not is_in_virtualenv():
|
||||
return False, "not in virtual environment"
|
||||
|
||||
|
||||
expected_venv = get_expected_venv_path()
|
||||
if not expected_venv.exists():
|
||||
return False, "expected virtual environment not found"
|
||||
|
||||
current_venv = os.environ.get('VIRTUAL_ENV')
|
||||
|
||||
current_venv = os.environ.get("VIRTUAL_ENV")
|
||||
if current_venv:
|
||||
current_venv_path = Path(current_venv).resolve()
|
||||
expected_venv_path = expected_venv.resolve()
|
||||
|
||||
|
||||
if current_venv_path != expected_venv_path:
|
||||
return False, f"wrong virtual environment (using {current_venv_path}, expected {expected_venv_path})"
|
||||
|
||||
return (
|
||||
False,
|
||||
f"wrong virtual environment (using {current_venv_path}, expected {expected_venv_path})",
|
||||
)
|
||||
|
||||
return True, "correct virtual environment"
|
||||
|
||||
|
||||
def show_venv_warning(script_name: str = "script") -> None:
|
||||
"""Show virtual environment warning with helpful instructions."""
|
||||
expected_venv = get_expected_venv_path()
|
||||
|
||||
|
||||
print("⚠️ VIRTUAL ENVIRONMENT WARNING")
|
||||
print("=" * 50)
|
||||
print()
|
||||
print(f"This {script_name} should be run in a Python virtual environment for:")
|
||||
print(" • Consistent dependencies")
|
||||
print(" • Isolated package versions")
|
||||
print(" • Isolated package versions")
|
||||
print(" • Proper security isolation")
|
||||
print(" • Reliable functionality")
|
||||
print()
|
||||
|
||||
|
||||
if expected_venv.exists():
|
||||
print("✅ Virtual environment found!")
|
||||
print(f" Location: {expected_venv}")
|
||||
@ -82,7 +88,7 @@ def show_venv_warning(script_name: str = "script") -> None:
|
||||
print(f" python3 -m venv {expected_venv}")
|
||||
print(f" source {expected_venv}/bin/activate")
|
||||
print(" pip install -r requirements.txt")
|
||||
|
||||
|
||||
print()
|
||||
print("💡 Why this matters:")
|
||||
print(" Without a virtual environment, you may experience:")
|
||||
@ -92,22 +98,23 @@ def show_venv_warning(script_name: str = "script") -> None:
|
||||
print(" • Potential system-wide package pollution")
|
||||
print()
|
||||
|
||||
|
||||
def check_and_warn_venv(script_name: str = "script", force_exit: bool = False) -> bool:
|
||||
"""
|
||||
Check virtual environment and warn if needed.
|
||||
|
||||
|
||||
Args:
|
||||
script_name: Name of the script for user-friendly messages
|
||||
force_exit: Whether to exit if not in correct venv
|
||||
|
||||
|
||||
Returns:
|
||||
True if in correct venv, False otherwise
|
||||
"""
|
||||
is_correct, message = check_correct_venv()
|
||||
|
||||
|
||||
if not is_correct:
|
||||
show_venv_warning(script_name)
|
||||
|
||||
|
||||
if force_exit:
|
||||
print(f"⛔ Exiting {script_name} for your safety.")
|
||||
print(" Please activate the virtual environment and try again.")
|
||||
@ -116,27 +123,32 @@ def check_and_warn_venv(script_name: str = "script", force_exit: bool = False) -
|
||||
print(f"⚠️ Continuing anyway, but {script_name} may not work correctly...")
|
||||
print()
|
||||
return False
|
||||
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def require_venv(script_name: str = "script") -> None:
|
||||
"""Require virtual environment or exit."""
|
||||
check_and_warn_venv(script_name, force_exit=True)
|
||||
|
||||
|
||||
# Quick test function
|
||||
|
||||
|
||||
def main():
|
||||
"""Test the virtual environment checker."""
|
||||
print("🧪 Virtual Environment Checker Test")
|
||||
print("=" * 40)
|
||||
|
||||
|
||||
print(f"In virtual environment: {is_in_virtualenv()}")
|
||||
print(f"Expected venv path: {get_expected_venv_path()}")
|
||||
|
||||
|
||||
is_correct, message = check_correct_venv()
|
||||
print(f"Correct venv: {is_correct} ({message})")
|
||||
|
||||
|
||||
if not is_correct:
|
||||
show_venv_warning("test script")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
||||
@ -4,14 +4,21 @@ Monitors project files and updates the index incrementally.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import threading
|
||||
import queue
|
||||
import threading
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Set, Optional, Callable
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Callable, Optional, Set
|
||||
|
||||
from watchdog.events import (
|
||||
FileCreatedEvent,
|
||||
FileDeletedEvent,
|
||||
FileModifiedEvent,
|
||||
FileMovedEvent,
|
||||
FileSystemEventHandler,
|
||||
)
|
||||
from watchdog.observers import Observer
|
||||
from watchdog.events import FileSystemEventHandler, FileModifiedEvent, FileCreatedEvent, FileDeletedEvent, FileMovedEvent
|
||||
|
||||
from .indexer import ProjectIndexer
|
||||
|
||||
@ -20,11 +27,11 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class UpdateQueue:
|
||||
"""Thread-safe queue for file updates with deduplication."""
|
||||
|
||||
|
||||
def __init__(self, delay: float = 1.0):
|
||||
"""
|
||||
Initialize update queue.
|
||||
|
||||
|
||||
Args:
|
||||
delay: Delay in seconds before processing updates (for debouncing)
|
||||
"""
|
||||
@ -33,24 +40,24 @@ class UpdateQueue:
|
||||
self.lock = threading.Lock()
|
||||
self.delay = delay
|
||||
self.last_update = {} # Track last update time per file
|
||||
|
||||
|
||||
def add(self, file_path: Path):
|
||||
"""Add a file to the update queue."""
|
||||
with self.lock:
|
||||
file_str = str(file_path)
|
||||
current_time = time.time()
|
||||
|
||||
|
||||
# Check if we should debounce this update
|
||||
if file_str in self.last_update:
|
||||
if current_time - self.last_update[file_str] < self.delay:
|
||||
return # Skip this update
|
||||
|
||||
|
||||
self.last_update[file_str] = current_time
|
||||
|
||||
|
||||
if file_str not in self.pending:
|
||||
self.pending.add(file_str)
|
||||
self.queue.put(file_path)
|
||||
|
||||
|
||||
def get(self, timeout: Optional[float] = None) -> Optional[Path]:
|
||||
"""Get next file from queue."""
|
||||
try:
|
||||
@ -60,11 +67,11 @@ class UpdateQueue:
|
||||
return file_path
|
||||
except queue.Empty:
|
||||
return None
|
||||
|
||||
|
||||
def empty(self) -> bool:
|
||||
"""Check if queue is empty."""
|
||||
return self.queue.empty()
|
||||
|
||||
|
||||
def size(self) -> int:
|
||||
"""Get queue size."""
|
||||
return self.queue.qsize()
|
||||
@ -72,15 +79,17 @@ class UpdateQueue:
|
||||
|
||||
class CodeFileEventHandler(FileSystemEventHandler):
|
||||
"""Handles file system events for code files."""
|
||||
|
||||
def __init__(self,
|
||||
update_queue: UpdateQueue,
|
||||
include_patterns: Set[str],
|
||||
exclude_patterns: Set[str],
|
||||
project_path: Path):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
update_queue: UpdateQueue,
|
||||
include_patterns: Set[str],
|
||||
exclude_patterns: Set[str],
|
||||
project_path: Path,
|
||||
):
|
||||
"""
|
||||
Initialize event handler.
|
||||
|
||||
|
||||
Args:
|
||||
update_queue: Queue for file updates
|
||||
include_patterns: File patterns to include
|
||||
@ -91,47 +100,47 @@ class CodeFileEventHandler(FileSystemEventHandler):
|
||||
self.include_patterns = include_patterns
|
||||
self.exclude_patterns = exclude_patterns
|
||||
self.project_path = project_path
|
||||
|
||||
|
||||
def _should_process(self, file_path: str) -> bool:
|
||||
"""Check if file should be processed."""
|
||||
path = Path(file_path)
|
||||
|
||||
|
||||
# Check if it's a file (not directory)
|
||||
if not path.is_file():
|
||||
return False
|
||||
|
||||
|
||||
# Check exclude patterns
|
||||
path_str = str(path)
|
||||
for pattern in self.exclude_patterns:
|
||||
if pattern in path_str:
|
||||
return False
|
||||
|
||||
|
||||
# Check include patterns
|
||||
for pattern in self.include_patterns:
|
||||
if path.match(pattern):
|
||||
return True
|
||||
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def on_modified(self, event: FileModifiedEvent):
|
||||
"""Handle file modification."""
|
||||
if not event.is_directory and self._should_process(event.src_path):
|
||||
logger.debug(f"File modified: {event.src_path}")
|
||||
self.update_queue.add(Path(event.src_path))
|
||||
|
||||
|
||||
def on_created(self, event: FileCreatedEvent):
|
||||
"""Handle file creation."""
|
||||
if not event.is_directory and self._should_process(event.src_path):
|
||||
logger.debug(f"File created: {event.src_path}")
|
||||
self.update_queue.add(Path(event.src_path))
|
||||
|
||||
|
||||
def on_deleted(self, event: FileDeletedEvent):
|
||||
"""Handle file deletion."""
|
||||
if not event.is_directory and self._should_process(event.src_path):
|
||||
logger.debug(f"File deleted: {event.src_path}")
|
||||
# Add deletion task to queue (we'll handle it differently)
|
||||
self.update_queue.add(Path(event.src_path))
|
||||
|
||||
|
||||
def on_moved(self, event: FileMovedEvent):
|
||||
"""Handle file move/rename."""
|
||||
if not event.is_directory:
|
||||
@ -145,16 +154,18 @@ class CodeFileEventHandler(FileSystemEventHandler):
|
||||
|
||||
class FileWatcher:
|
||||
"""Watches project files and updates index automatically."""
|
||||
|
||||
def __init__(self,
|
||||
project_path: Path,
|
||||
indexer: Optional[ProjectIndexer] = None,
|
||||
update_delay: float = 1.0,
|
||||
batch_size: int = 10,
|
||||
batch_timeout: float = 5.0):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
project_path: Path,
|
||||
indexer: Optional[ProjectIndexer] = None,
|
||||
update_delay: float = 1.0,
|
||||
batch_size: int = 10,
|
||||
batch_timeout: float = 5.0,
|
||||
):
|
||||
"""
|
||||
Initialize file watcher.
|
||||
|
||||
|
||||
Args:
|
||||
project_path: Path to project to watch
|
||||
indexer: ProjectIndexer instance (creates one if not provided)
|
||||
@ -167,86 +178,79 @@ class FileWatcher:
|
||||
self.update_delay = update_delay
|
||||
self.batch_size = batch_size
|
||||
self.batch_timeout = batch_timeout
|
||||
|
||||
|
||||
# Initialize components
|
||||
self.update_queue = UpdateQueue(delay=update_delay)
|
||||
self.observer = Observer()
|
||||
self.worker_thread = None
|
||||
self.running = False
|
||||
|
||||
|
||||
# Get patterns from indexer
|
||||
self.include_patterns = set(self.indexer.include_patterns)
|
||||
self.exclude_patterns = set(self.indexer.exclude_patterns)
|
||||
|
||||
|
||||
# Statistics
|
||||
self.stats = {
|
||||
'files_updated': 0,
|
||||
'files_failed': 0,
|
||||
'started_at': None,
|
||||
'last_update': None,
|
||||
"files_updated": 0,
|
||||
"files_failed": 0,
|
||||
"started_at": None,
|
||||
"last_update": None,
|
||||
}
|
||||
|
||||
|
||||
def start(self):
|
||||
"""Start watching for file changes."""
|
||||
if self.running:
|
||||
logger.warning("Watcher is already running")
|
||||
return
|
||||
|
||||
|
||||
logger.info(f"Starting file watcher for {self.project_path}")
|
||||
|
||||
|
||||
# Set up file system observer
|
||||
event_handler = CodeFileEventHandler(
|
||||
self.update_queue,
|
||||
self.include_patterns,
|
||||
self.exclude_patterns,
|
||||
self.project_path
|
||||
self.project_path,
|
||||
)
|
||||
|
||||
self.observer.schedule(
|
||||
event_handler,
|
||||
str(self.project_path),
|
||||
recursive=True
|
||||
)
|
||||
|
||||
|
||||
self.observer.schedule(event_handler, str(self.project_path), recursive=True)
|
||||
|
||||
# Start worker thread
|
||||
self.running = True
|
||||
self.worker_thread = threading.Thread(
|
||||
target=self._process_updates,
|
||||
daemon=True
|
||||
)
|
||||
self.worker_thread = threading.Thread(target=self._process_updates, daemon=True)
|
||||
self.worker_thread.start()
|
||||
|
||||
|
||||
# Start observer
|
||||
self.observer.start()
|
||||
|
||||
self.stats['started_at'] = datetime.now()
|
||||
|
||||
self.stats["started_at"] = datetime.now()
|
||||
logger.info("File watcher started successfully")
|
||||
|
||||
|
||||
def stop(self):
|
||||
"""Stop watching for file changes."""
|
||||
if not self.running:
|
||||
return
|
||||
|
||||
|
||||
logger.info("Stopping file watcher...")
|
||||
|
||||
|
||||
# Stop observer
|
||||
self.observer.stop()
|
||||
self.observer.join()
|
||||
|
||||
|
||||
# Stop worker thread
|
||||
self.running = False
|
||||
if self.worker_thread:
|
||||
self.worker_thread.join(timeout=5.0)
|
||||
|
||||
|
||||
logger.info("File watcher stopped")
|
||||
|
||||
|
||||
def _process_updates(self):
|
||||
"""Worker thread that processes file updates."""
|
||||
logger.info("Update processor thread started")
|
||||
|
||||
|
||||
batch = []
|
||||
batch_start_time = None
|
||||
|
||||
|
||||
while self.running:
|
||||
try:
|
||||
# Calculate timeout for getting next item
|
||||
@ -263,46 +267,46 @@ class FileWatcher:
|
||||
else:
|
||||
# Wait for more items or timeout
|
||||
timeout = min(0.1, self.batch_timeout - elapsed)
|
||||
|
||||
|
||||
# Get next file from queue
|
||||
file_path = self.update_queue.get(timeout=timeout)
|
||||
|
||||
|
||||
if file_path:
|
||||
# Add to batch
|
||||
if not batch:
|
||||
batch_start_time = time.time()
|
||||
batch.append(file_path)
|
||||
|
||||
|
||||
# Check if batch is full
|
||||
if len(batch) >= self.batch_size:
|
||||
self._process_batch(batch)
|
||||
batch = []
|
||||
batch_start_time = None
|
||||
|
||||
|
||||
except queue.Empty:
|
||||
# Check if we have a pending batch that's timed out
|
||||
if batch and (time.time() - batch_start_time) >= self.batch_timeout:
|
||||
self._process_batch(batch)
|
||||
batch = []
|
||||
batch_start_time = None
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error in update processor: {e}")
|
||||
time.sleep(1) # Prevent tight loop on error
|
||||
|
||||
|
||||
# Process any remaining items
|
||||
if batch:
|
||||
self._process_batch(batch)
|
||||
|
||||
|
||||
logger.info("Update processor thread stopped")
|
||||
|
||||
|
||||
def _process_batch(self, files: list[Path]):
|
||||
"""Process a batch of file updates."""
|
||||
if not files:
|
||||
return
|
||||
|
||||
|
||||
logger.info(f"Processing batch of {len(files)} file updates")
|
||||
|
||||
|
||||
for file_path in files:
|
||||
try:
|
||||
if file_path.exists():
|
||||
@ -313,87 +317,91 @@ class FileWatcher:
|
||||
# File doesn't exist - delete from index
|
||||
logger.debug(f"Deleting {file_path} from index - file no longer exists")
|
||||
success = self.indexer.delete_file(file_path)
|
||||
|
||||
|
||||
if success:
|
||||
self.stats['files_updated'] += 1
|
||||
self.stats["files_updated"] += 1
|
||||
else:
|
||||
self.stats['files_failed'] += 1
|
||||
|
||||
self.stats['last_update'] = datetime.now()
|
||||
|
||||
self.stats["files_failed"] += 1
|
||||
|
||||
self.stats["last_update"] = datetime.now()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to process {file_path}: {e}")
|
||||
self.stats['files_failed'] += 1
|
||||
|
||||
logger.info(f"Batch processing complete. Updated: {self.stats['files_updated']}, Failed: {self.stats['files_failed']}")
|
||||
|
||||
self.stats["files_failed"] += 1
|
||||
|
||||
logger.info(
|
||||
f"Batch processing complete. Updated: {self.stats['files_updated']}, Failed: {self.stats['files_failed']}"
|
||||
)
|
||||
|
||||
def get_statistics(self) -> dict:
|
||||
"""Get watcher statistics."""
|
||||
stats = self.stats.copy()
|
||||
stats['queue_size'] = self.update_queue.size()
|
||||
stats['is_running'] = self.running
|
||||
|
||||
if stats['started_at']:
|
||||
uptime = datetime.now() - stats['started_at']
|
||||
stats['uptime_seconds'] = uptime.total_seconds()
|
||||
|
||||
stats["queue_size"] = self.update_queue.size()
|
||||
stats["is_running"] = self.running
|
||||
|
||||
if stats["started_at"]:
|
||||
uptime = datetime.now() - stats["started_at"]
|
||||
stats["uptime_seconds"] = uptime.total_seconds()
|
||||
|
||||
return stats
|
||||
|
||||
|
||||
def wait_for_updates(self, timeout: Optional[float] = None) -> bool:
|
||||
"""
|
||||
Wait for pending updates to complete.
|
||||
|
||||
|
||||
Args:
|
||||
timeout: Maximum time to wait in seconds
|
||||
|
||||
|
||||
Returns:
|
||||
True if all updates completed, False if timeout
|
||||
"""
|
||||
start_time = time.time()
|
||||
|
||||
|
||||
while not self.update_queue.empty():
|
||||
if timeout and (time.time() - start_time) > timeout:
|
||||
return False
|
||||
time.sleep(0.1)
|
||||
|
||||
|
||||
# Wait a bit more to ensure batch processing completes
|
||||
time.sleep(self.batch_timeout + 0.5)
|
||||
return True
|
||||
|
||||
|
||||
def __enter__(self):
|
||||
"""Context manager entry."""
|
||||
self.start()
|
||||
return self
|
||||
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
"""Context manager exit."""
|
||||
self.stop()
|
||||
|
||||
|
||||
# Convenience function
|
||||
|
||||
|
||||
def watch_project(project_path: Path, callback: Optional[Callable] = None):
|
||||
"""
|
||||
Watch a project for changes and update index automatically.
|
||||
|
||||
|
||||
Args:
|
||||
project_path: Path to project
|
||||
callback: Optional callback function called after each update
|
||||
"""
|
||||
watcher = FileWatcher(project_path)
|
||||
|
||||
|
||||
try:
|
||||
watcher.start()
|
||||
logger.info(f"Watching {project_path} for changes. Press Ctrl+C to stop.")
|
||||
|
||||
|
||||
while True:
|
||||
time.sleep(1)
|
||||
|
||||
|
||||
# Call callback if provided
|
||||
if callback:
|
||||
stats = watcher.get_statistics()
|
||||
callback(stats)
|
||||
|
||||
|
||||
except KeyboardInterrupt:
|
||||
logger.info("Stopping watcher...")
|
||||
finally:
|
||||
watcher.stop()
|
||||
watcher.stop()
|
||||
|
||||
@ -3,9 +3,9 @@ Windows Console Unicode/Emoji Fix
|
||||
Reliable Windows console Unicode/emoji support for 2025.
|
||||
"""
|
||||
|
||||
import sys
|
||||
import os
|
||||
import io
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
def fix_windows_console():
|
||||
@ -14,28 +14,33 @@ def fix_windows_console():
|
||||
Call this at the start of any script that needs to output Unicode/emojis.
|
||||
"""
|
||||
# Set environment variable for UTF-8 mode
|
||||
os.environ['PYTHONUTF8'] = '1'
|
||||
|
||||
os.environ["PYTHONUTF8"] = "1"
|
||||
|
||||
# For Python 3.7+
|
||||
if hasattr(sys.stdout, 'reconfigure'):
|
||||
sys.stdout.reconfigure(encoding='utf-8')
|
||||
sys.stderr.reconfigure(encoding='utf-8')
|
||||
if hasattr(sys.stdin, 'reconfigure'):
|
||||
sys.stdin.reconfigure(encoding='utf-8')
|
||||
if hasattr(sys.stdout, "reconfigure"):
|
||||
sys.stdout.reconfigure(encoding="utf-8")
|
||||
sys.stderr.reconfigure(encoding="utf-8")
|
||||
if hasattr(sys.stdin, "reconfigure"):
|
||||
sys.stdin.reconfigure(encoding="utf-8")
|
||||
else:
|
||||
# For older Python versions
|
||||
if sys.platform == 'win32':
|
||||
if sys.platform == "win32":
|
||||
# Replace streams with UTF-8 versions
|
||||
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8', line_buffering=True)
|
||||
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8', line_buffering=True)
|
||||
|
||||
sys.stdout = io.TextIOWrapper(
|
||||
sys.stdout.buffer, encoding="utf-8", line_buffering=True
|
||||
)
|
||||
sys.stderr = io.TextIOWrapper(
|
||||
sys.stderr.buffer, encoding="utf-8", line_buffering=True
|
||||
)
|
||||
|
||||
# Also set the console code page to UTF-8 on Windows
|
||||
if sys.platform == 'win32':
|
||||
if sys.platform == "win32":
|
||||
import subprocess
|
||||
|
||||
try:
|
||||
# Set console to UTF-8 code page
|
||||
subprocess.run(['chcp', '65001'], shell=True, capture_output=True)
|
||||
except:
|
||||
subprocess.run(["chcp", "65001"], shell=True, capture_output=True)
|
||||
except (OSError, subprocess.SubprocessError):
|
||||
pass
|
||||
|
||||
|
||||
@ -44,12 +49,14 @@ fix_windows_console()
|
||||
|
||||
|
||||
# Test function to verify it works
|
||||
|
||||
|
||||
def test_emojis():
|
||||
"""Test that emojis work properly."""
|
||||
print("Testing emoji output:")
|
||||
print(" Check mark")
|
||||
print(" Cross mark")
|
||||
print(" Rocket")
|
||||
print(" Rocket")
|
||||
print(" Fire")
|
||||
print(" Computer")
|
||||
print(" Python")
|
||||
@ -57,7 +64,7 @@ def test_emojis():
|
||||
print(" Search")
|
||||
print(" Lightning")
|
||||
print(" Sparkles")
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_emojis()
|
||||
test_emojis()
|
||||
|
||||
34
pyproject.toml
Normal file
34
pyproject.toml
Normal file
@ -0,0 +1,34 @@
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
line_length = 95
|
||||
multi_line_output = 3
|
||||
include_trailing_comma = true
|
||||
force_grid_wrap = 0
|
||||
use_parentheses = true
|
||||
ensure_newline_before_comments = true
|
||||
src_paths = ["mini_rag", "tests", "examples", "scripts"]
|
||||
known_first_party = ["mini_rag"]
|
||||
sections = ["FUTURE", "STDLIB", "THIRDPARTY", "FIRSTPARTY", "LOCALFOLDER"]
|
||||
skip = [".venv", ".venv-linting", "__pycache__", ".git"]
|
||||
skip_glob = ["*.egg-info/*", "build/*", "dist/*"]
|
||||
|
||||
[tool.black]
|
||||
line-length = 95
|
||||
target-version = ['py310']
|
||||
include = '\.pyi?$'
|
||||
extend-exclude = '''
|
||||
/(
|
||||
# directories
|
||||
\.eggs
|
||||
| \.git
|
||||
| \.hg
|
||||
| \.mypy_cache
|
||||
| \.tox
|
||||
| \.venv
|
||||
| \.venv-linting
|
||||
| _build
|
||||
| buck-out
|
||||
| build
|
||||
| dist
|
||||
)/
|
||||
'''
|
||||
2
rag-mini
2
rag-mini
@ -329,7 +329,7 @@ main() {
|
||||
;;
|
||||
"index"|"search"|"explore"|"status"|"update"|"check-update")
|
||||
# Direct CLI commands - call Python script
|
||||
exec "$PYTHON" "$SCRIPT_DIR/rag-mini.py" "$@"
|
||||
exec "$PYTHON" "$SCRIPT_DIR/bin/rag-mini.py" "$@"
|
||||
;;
|
||||
*)
|
||||
# Unknown command - show help
|
||||
|
||||
2
rag-tui
2
rag-tui
@ -19,4 +19,4 @@ if [ ! -f "$PYTHON" ]; then
|
||||
fi
|
||||
|
||||
# Launch TUI
|
||||
exec "$PYTHON" "$SCRIPT_DIR/rag-tui.py" "$@"
|
||||
exec "$PYTHON" "$SCRIPT_DIR/bin/rag-tui.py" "$@"
|
||||
@ -6,67 +6,67 @@ Converts a project to use the auto-update template system.
|
||||
This script helps migrate projects from Gitea to GitHub with auto-update capability.
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import json
|
||||
import shutil
|
||||
import argparse
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any, Optional
|
||||
from typing import Dict, Optional
|
||||
|
||||
|
||||
def setup_project_template(
|
||||
project_path: Path,
|
||||
repo_owner: str,
|
||||
repo_name: str,
|
||||
project_type: str = "python",
|
||||
include_auto_update: bool = True
|
||||
include_auto_update: bool = True,
|
||||
) -> bool:
|
||||
"""
|
||||
Setup a project to use the GitHub auto-update template system.
|
||||
|
||||
|
||||
Args:
|
||||
project_path: Path to the project directory
|
||||
repo_owner: GitHub username/organization
|
||||
repo_name: GitHub repository name
|
||||
repo_name: GitHub repository name
|
||||
project_type: Type of project (python, general)
|
||||
include_auto_update: Whether to include auto-update system
|
||||
|
||||
|
||||
Returns:
|
||||
True if setup successful
|
||||
"""
|
||||
|
||||
|
||||
print(f"🚀 Setting up GitHub template for: {repo_owner}/{repo_name}")
|
||||
print(f"📁 Project path: {project_path}")
|
||||
print(f"🔧 Project type: {project_type}")
|
||||
print(f"🔄 Auto-update: {'Enabled' if include_auto_update else 'Disabled'}")
|
||||
print()
|
||||
|
||||
|
||||
try:
|
||||
# Create .github directory structure
|
||||
github_dir = project_path / ".github"
|
||||
workflows_dir = github_dir / "workflows"
|
||||
templates_dir = github_dir / "ISSUE_TEMPLATE"
|
||||
|
||||
|
||||
# Ensure directories exist
|
||||
workflows_dir.mkdir(parents=True, exist_ok=True)
|
||||
templates_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
# 1. Setup GitHub Actions workflows
|
||||
setup_workflows(workflows_dir, repo_owner, repo_name, project_type)
|
||||
|
||||
|
||||
# 2. Setup auto-update system if requested
|
||||
if include_auto_update:
|
||||
setup_auto_update_system(project_path, repo_owner, repo_name)
|
||||
|
||||
|
||||
# 3. Create issue templates
|
||||
setup_issue_templates(templates_dir)
|
||||
|
||||
|
||||
# 4. Create/update project configuration
|
||||
setup_project_config(project_path, repo_owner, repo_name, include_auto_update)
|
||||
|
||||
|
||||
# 5. Create README template if needed
|
||||
setup_readme_template(project_path, repo_owner, repo_name)
|
||||
|
||||
|
||||
print("✅ GitHub template setup completed successfully!")
|
||||
print()
|
||||
print("📋 Next Steps:")
|
||||
@ -75,20 +75,21 @@ def setup_project_template(
|
||||
print("3. Test auto-update system: ./project check-update")
|
||||
print("4. Enable GitHub Pages for documentation (optional)")
|
||||
print()
|
||||
|
||||
|
||||
return True
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Setup failed: {e}")
|
||||
return False
|
||||
|
||||
|
||||
def setup_workflows(workflows_dir: Path, repo_owner: str, repo_name: str, project_type: str):
|
||||
"""Setup GitHub Actions workflow files."""
|
||||
|
||||
|
||||
print("🔧 Setting up GitHub Actions workflows...")
|
||||
|
||||
|
||||
# Release workflow
|
||||
release_workflow = f"""name: Auto Release & Update System
|
||||
release_workflow = """name: Auto Release & Update System
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
@ -105,18 +106,18 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.11'
|
||||
|
||||
|
||||
- name: Extract version
|
||||
id: version
|
||||
run: |
|
||||
@ -127,18 +128,18 @@ jobs:
|
||||
fi
|
||||
echo "version=$VERSION" >> $GITHUB_OUTPUT
|
||||
echo "clean_version=${{VERSION#v}}" >> $GITHUB_OUTPUT
|
||||
|
||||
|
||||
- name: Update version in code
|
||||
run: |
|
||||
VERSION="${{{{ steps.version.outputs.clean_version }}}}"
|
||||
# Update version files
|
||||
find . -name "__init__.py" -exec sed -i 's/__version__ = ".*"/__version__ = "'$VERSION'"/' {{}} +
|
||||
|
||||
|
||||
- name: Generate release notes
|
||||
id: release_notes
|
||||
run: |
|
||||
VERSION="${{{{ steps.version.outputs.version }}}}"
|
||||
|
||||
|
||||
# Get commits since last tag
|
||||
LAST_TAG=$(git describe --tags --abbrev=0 HEAD~1 2>/dev/null || echo "")
|
||||
if [ -n "$LAST_TAG" ]; then
|
||||
@ -146,20 +147,20 @@ jobs:
|
||||
else
|
||||
COMMITS=$(git log --oneline --pretty=format:"• %s" | head -10)
|
||||
fi
|
||||
|
||||
|
||||
# Create release notes
|
||||
cat > release_notes.md << EOF
|
||||
## What's New in $VERSION
|
||||
|
||||
|
||||
### 🚀 Changes
|
||||
$COMMITS
|
||||
|
||||
|
||||
### 📥 Installation
|
||||
Download and install the latest version:
|
||||
\`\`\`bash
|
||||
curl -sSL https://github.com/{repo_owner}/{repo_name}/releases/latest/download/install.sh | bash
|
||||
\`\`\`
|
||||
|
||||
|
||||
### 🔄 Auto-Update
|
||||
If you have auto-update support:
|
||||
\`\`\`bash
|
||||
@ -167,7 +168,7 @@ jobs:
|
||||
./{repo_name} update
|
||||
\`\`\`
|
||||
EOF
|
||||
|
||||
|
||||
- name: Create GitHub Release
|
||||
uses: softprops/action-gh-release@v2
|
||||
with:
|
||||
@ -181,12 +182,12 @@ jobs:
|
||||
*.bat
|
||||
requirements.txt
|
||||
"""
|
||||
|
||||
|
||||
(workflows_dir / "release.yml").write_text(release_workflow)
|
||||
|
||||
|
||||
# CI workflow for Python projects
|
||||
if project_type == "python":
|
||||
ci_workflow = f"""name: CI/CD Pipeline
|
||||
ci_workflow = """name: CI/CD Pipeline
|
||||
on:
|
||||
push:
|
||||
branches: [ main, develop ]
|
||||
@ -201,25 +202,25 @@ jobs:
|
||||
matrix:
|
||||
os: [ubuntu-latest, windows-latest, macos-latest]
|
||||
python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
||||
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
|
||||
- name: Set up Python ${{{{ matrix.python-version }}}}
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{{{ matrix.python-version }}}}
|
||||
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r requirements.txt
|
||||
|
||||
|
||||
- name: Run tests
|
||||
run: |
|
||||
python -c "import {repo_name.replace('-', '_')}; print('✅ Import successful')"
|
||||
|
||||
|
||||
- name: Test auto-update system
|
||||
run: |
|
||||
python -c "
|
||||
@ -231,33 +232,38 @@ jobs:
|
||||
"
|
||||
"""
|
||||
(workflows_dir / "ci.yml").write_text(ci_workflow)
|
||||
|
||||
|
||||
print(" ✅ GitHub Actions workflows created")
|
||||
|
||||
|
||||
def setup_auto_update_system(project_path: Path, repo_owner: str, repo_name: str):
|
||||
"""Setup the auto-update system for the project."""
|
||||
|
||||
|
||||
print("🔄 Setting up auto-update system...")
|
||||
|
||||
|
||||
# Copy updater.py from FSS-Mini-RAG as template
|
||||
template_updater = Path(__file__).parent.parent / "mini_rag" / "updater.py"
|
||||
|
||||
|
||||
if template_updater.exists():
|
||||
# Create project module directory if needed
|
||||
module_name = repo_name.replace('-', '_')
|
||||
module_name = repo_name.replace("-", "_")
|
||||
module_dir = project_path / module_name
|
||||
module_dir.mkdir(exist_ok=True)
|
||||
|
||||
|
||||
# Copy and customize updater
|
||||
target_updater = module_dir / "updater.py"
|
||||
shutil.copy2(template_updater, target_updater)
|
||||
|
||||
|
||||
# Customize for this project
|
||||
content = target_updater.read_text()
|
||||
content = content.replace('repo_owner: str = "FSSCoding"', f'repo_owner: str = "{repo_owner}"')
|
||||
content = content.replace('repo_name: str = "Fss-Mini-Rag"', f'repo_name: str = "{repo_name}"')
|
||||
content = content.replace(
|
||||
'repo_owner: str = "FSSCoding"', f'repo_owner: str = "{repo_owner}"'
|
||||
)
|
||||
content = content.replace(
|
||||
'repo_name: str = "Fss-Mini-Rag"', f'repo_name: str = "{repo_name}"'
|
||||
)
|
||||
target_updater.write_text(content)
|
||||
|
||||
|
||||
# Update __init__.py to include updater
|
||||
init_file = module_dir / "__init__.py"
|
||||
if init_file.exists():
|
||||
@ -272,16 +278,17 @@ except ImportError:
|
||||
pass
|
||||
"""
|
||||
init_file.write_text(content)
|
||||
|
||||
|
||||
print(" ✅ Auto-update system configured")
|
||||
else:
|
||||
print(" ⚠️ Template updater not found, you'll need to implement manually")
|
||||
|
||||
|
||||
def setup_issue_templates(templates_dir: Path):
|
||||
"""Setup GitHub issue templates."""
|
||||
|
||||
|
||||
print("📝 Setting up issue templates...")
|
||||
|
||||
|
||||
bug_template = """---
|
||||
name: Bug Report
|
||||
about: Create a report to help us improve
|
||||
@ -312,7 +319,7 @@ A clear and concise description of what you expected to happen.
|
||||
**Additional context**
|
||||
Add any other context about the problem here.
|
||||
"""
|
||||
|
||||
|
||||
feature_template = """---
|
||||
name: Feature Request
|
||||
about: Suggest an idea for this project
|
||||
@ -334,46 +341,50 @@ A clear and concise description of any alternative solutions you've considered.
|
||||
**Additional context**
|
||||
Add any other context or screenshots about the feature request here.
|
||||
"""
|
||||
|
||||
|
||||
(templates_dir / "bug_report.md").write_text(bug_template)
|
||||
(templates_dir / "feature_request.md").write_text(feature_template)
|
||||
|
||||
|
||||
print(" ✅ Issue templates created")
|
||||
|
||||
def setup_project_config(project_path: Path, repo_owner: str, repo_name: str, include_auto_update: bool):
|
||||
|
||||
def setup_project_config(
|
||||
project_path: Path, repo_owner: str, repo_name: str, include_auto_update: bool
|
||||
):
|
||||
"""Setup project configuration file."""
|
||||
|
||||
|
||||
print("⚙️ Setting up project configuration...")
|
||||
|
||||
|
||||
config = {
|
||||
"project": {
|
||||
"name": repo_name,
|
||||
"owner": repo_owner,
|
||||
"github_url": f"https://github.com/{repo_owner}/{repo_name}",
|
||||
"auto_update_enabled": include_auto_update
|
||||
"auto_update_enabled": include_auto_update,
|
||||
},
|
||||
"github": {
|
||||
"template_version": "1.0.0",
|
||||
"last_sync": None,
|
||||
"workflows_enabled": True
|
||||
}
|
||||
"workflows_enabled": True,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
config_file = project_path / ".github" / "project-config.json"
|
||||
with open(config_file, 'w') as f:
|
||||
with open(config_file, "w") as f:
|
||||
json.dump(config, f, indent=2)
|
||||
|
||||
|
||||
print(" ✅ Project configuration created")
|
||||
|
||||
|
||||
def setup_readme_template(project_path: Path, repo_owner: str, repo_name: str):
|
||||
"""Setup README template if one doesn't exist."""
|
||||
|
||||
|
||||
readme_file = project_path / "README.md"
|
||||
|
||||
|
||||
if not readme_file.exists():
|
||||
print("📖 Creating README template...")
|
||||
|
||||
readme_content = f"""# {repo_name}
|
||||
|
||||
readme_content = """# {repo_name}
|
||||
|
||||
> A brief description of your project
|
||||
|
||||
@ -390,7 +401,7 @@ curl -sSL https://github.com/{repo_owner}/{repo_name}/releases/latest/download/i
|
||||
## Features
|
||||
|
||||
- ✨ Feature 1
|
||||
- 🚀 Feature 2
|
||||
- 🚀 Feature 2
|
||||
- 🔧 Feature 3
|
||||
|
||||
## Installation
|
||||
@ -441,10 +452,11 @@ This project includes automatic update checking:
|
||||
|
||||
🤖 **Auto-Update Enabled**: This project will notify you of new versions automatically!
|
||||
"""
|
||||
|
||||
|
||||
readme_file.write_text(readme_content)
|
||||
print(" ✅ README template created")
|
||||
|
||||
|
||||
def main():
|
||||
"""Main entry point."""
|
||||
parser = argparse.ArgumentParser(
|
||||
@ -454,32 +466,38 @@ def main():
|
||||
Examples:
|
||||
python setup-github-template.py myproject --owner username --name my-project
|
||||
python setup-github-template.py /path/to/project --owner org --name cool-tool --no-auto-update
|
||||
"""
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument('project_path', type=Path, help='Path to project directory')
|
||||
parser.add_argument('--owner', required=True, help='GitHub username or organization')
|
||||
parser.add_argument('--name', required=True, help='GitHub repository name')
|
||||
parser.add_argument('--type', choices=['python', 'general'], default='python',
|
||||
help='Project type (default: python)')
|
||||
parser.add_argument('--no-auto-update', action='store_true',
|
||||
help='Disable auto-update system')
|
||||
|
||||
|
||||
parser.add_argument("project_path", type=Path, help="Path to project directory")
|
||||
parser.add_argument("--owner", required=True, help="GitHub username or organization")
|
||||
parser.add_argument("--name", required=True, help="GitHub repository name")
|
||||
parser.add_argument(
|
||||
"--type",
|
||||
choices=["python", "general"],
|
||||
default="python",
|
||||
help="Project type (default: python)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--no-auto-update", action="store_true", help="Disable auto-update system"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
if not args.project_path.exists():
|
||||
print(f"❌ Project path does not exist: {args.project_path}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
success = setup_project_template(
|
||||
project_path=args.project_path,
|
||||
repo_owner=args.owner,
|
||||
repo_name=args.name,
|
||||
project_type=args.type,
|
||||
include_auto_update=not args.no_auto_update
|
||||
include_auto_update=not args.no_auto_update,
|
||||
)
|
||||
|
||||
|
||||
sys.exit(0 if success else 1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
||||
@ -4,80 +4,87 @@ Test script to validate all config examples are syntactically correct
|
||||
and contain required fields for FSS-Mini-RAG.
|
||||
"""
|
||||
|
||||
import yaml
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Dict, Any, List
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import yaml
|
||||
|
||||
|
||||
def validate_config_structure(config: Dict[str, Any], config_name: str) -> List[str]:
|
||||
"""Validate that config has required structure."""
|
||||
errors = []
|
||||
|
||||
|
||||
# Required sections
|
||||
required_sections = ['chunking', 'streaming', 'files', 'embedding', 'search']
|
||||
required_sections = ["chunking", "streaming", "files", "embedding", "search"]
|
||||
for section in required_sections:
|
||||
if section not in config:
|
||||
errors.append(f"{config_name}: Missing required section '{section}'")
|
||||
|
||||
|
||||
# Validate chunking section
|
||||
if 'chunking' in config:
|
||||
chunking = config['chunking']
|
||||
required_chunking = ['max_size', 'min_size', 'strategy']
|
||||
if "chunking" in config:
|
||||
chunking = config["chunking"]
|
||||
required_chunking = ["max_size", "min_size", "strategy"]
|
||||
for field in required_chunking:
|
||||
if field not in chunking:
|
||||
errors.append(f"{config_name}: Missing chunking.{field}")
|
||||
|
||||
|
||||
# Validate types and ranges
|
||||
if 'max_size' in chunking and not isinstance(chunking['max_size'], int):
|
||||
if "max_size" in chunking and not isinstance(chunking["max_size"], int):
|
||||
errors.append(f"{config_name}: chunking.max_size must be integer")
|
||||
if 'min_size' in chunking and not isinstance(chunking['min_size'], int):
|
||||
if "min_size" in chunking and not isinstance(chunking["min_size"], int):
|
||||
errors.append(f"{config_name}: chunking.min_size must be integer")
|
||||
if 'strategy' in chunking and chunking['strategy'] not in ['semantic', 'fixed']:
|
||||
if "strategy" in chunking and chunking["strategy"] not in ["semantic", "fixed"]:
|
||||
errors.append(f"{config_name}: chunking.strategy must be 'semantic' or 'fixed'")
|
||||
|
||||
|
||||
# Validate embedding section
|
||||
if 'embedding' in config:
|
||||
embedding = config['embedding']
|
||||
if 'preferred_method' in embedding:
|
||||
valid_methods = ['ollama', 'ml', 'hash', 'auto']
|
||||
if embedding['preferred_method'] not in valid_methods:
|
||||
errors.append(f"{config_name}: embedding.preferred_method must be one of {valid_methods}")
|
||||
|
||||
if "embedding" in config:
|
||||
embedding = config["embedding"]
|
||||
if "preferred_method" in embedding:
|
||||
valid_methods = ["ollama", "ml", "hash", "auto"]
|
||||
if embedding["preferred_method"] not in valid_methods:
|
||||
errors.append(
|
||||
f"{config_name}: embedding.preferred_method must be one of {valid_methods}"
|
||||
)
|
||||
|
||||
# Validate LLM section (if present)
|
||||
if 'llm' in config:
|
||||
llm = config['llm']
|
||||
if 'synthesis_temperature' in llm:
|
||||
temp = llm['synthesis_temperature']
|
||||
if "llm" in config:
|
||||
llm = config["llm"]
|
||||
if "synthesis_temperature" in llm:
|
||||
temp = llm["synthesis_temperature"]
|
||||
if not isinstance(temp, (int, float)) or temp < 0 or temp > 1:
|
||||
errors.append(f"{config_name}: llm.synthesis_temperature must be number between 0-1")
|
||||
|
||||
errors.append(
|
||||
f"{config_name}: llm.synthesis_temperature must be number between 0-1"
|
||||
)
|
||||
|
||||
return errors
|
||||
|
||||
|
||||
def test_config_file(config_path: Path) -> bool:
|
||||
"""Test a single config file."""
|
||||
print(f"Testing {config_path.name}...")
|
||||
|
||||
|
||||
try:
|
||||
# Test YAML parsing
|
||||
with open(config_path, 'r') as f:
|
||||
with open(config_path, "r") as f:
|
||||
config = yaml.safe_load(f)
|
||||
|
||||
|
||||
if not config:
|
||||
print(f" ❌ {config_path.name}: Empty or invalid YAML")
|
||||
return False
|
||||
|
||||
|
||||
# Test structure
|
||||
errors = validate_config_structure(config, config_path.name)
|
||||
|
||||
|
||||
if errors:
|
||||
print(f" ❌ {config_path.name}: Structure errors:")
|
||||
for error in errors:
|
||||
print(f" • {error}")
|
||||
return False
|
||||
|
||||
|
||||
print(f" ✅ {config_path.name}: Valid")
|
||||
return True
|
||||
|
||||
|
||||
except yaml.YAMLError as e:
|
||||
print(f" ❌ {config_path.name}: YAML parsing error: {e}")
|
||||
return False
|
||||
@ -85,31 +92,32 @@ def test_config_file(config_path: Path) -> bool:
|
||||
print(f" ❌ {config_path.name}: Unexpected error: {e}")
|
||||
return False
|
||||
|
||||
|
||||
def main():
|
||||
"""Test all config examples."""
|
||||
script_dir = Path(__file__).parent
|
||||
project_root = script_dir.parent
|
||||
examples_dir = project_root / 'examples'
|
||||
|
||||
examples_dir = project_root / "examples"
|
||||
|
||||
if not examples_dir.exists():
|
||||
print(f"❌ Examples directory not found: {examples_dir}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
# Find all config files
|
||||
config_files = list(examples_dir.glob('config*.yaml'))
|
||||
|
||||
config_files = list(examples_dir.glob("config*.yaml"))
|
||||
|
||||
if not config_files:
|
||||
print(f"❌ No config files found in {examples_dir}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
print(f"🧪 Testing {len(config_files)} config files...\n")
|
||||
|
||||
|
||||
all_passed = True
|
||||
for config_file in sorted(config_files):
|
||||
passed = test_config_file(config_file)
|
||||
if not passed:
|
||||
all_passed = False
|
||||
|
||||
|
||||
print(f"\n{'='*50}")
|
||||
if all_passed:
|
||||
print("✅ All config files are valid!")
|
||||
@ -120,5 +128,6 @@ def main():
|
||||
print("❌ Some config files have issues - please fix before release")
|
||||
sys.exit(1)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
@ -14,74 +14,82 @@ import sys
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
from mini_rag.chunker import CodeChunker
|
||||
from mini_rag.indexer import ProjectIndexer
|
||||
from mini_rag.ollama_embeddings import OllamaEmbedder as CodeEmbedder
|
||||
from mini_rag.search import CodeSearcher
|
||||
|
||||
# Check if virtual environment is activated
|
||||
|
||||
|
||||
def check_venv():
|
||||
if 'VIRTUAL_ENV' not in os.environ:
|
||||
if "VIRTUAL_ENV" not in os.environ:
|
||||
print("⚠️ WARNING: Virtual environment not detected!")
|
||||
print(" This test requires the virtual environment to be activated.")
|
||||
print(" Run: source .venv/bin/activate && PYTHONPATH=. python tests/01_basic_integration_test.py")
|
||||
print(
|
||||
" Run: source .venv/bin/activate && PYTHONPATH=. python tests/01_basic_integration_test.py"
|
||||
)
|
||||
print(" Continuing anyway...\n")
|
||||
|
||||
|
||||
check_venv()
|
||||
|
||||
# Fix Windows encoding
|
||||
if sys.platform == 'win32':
|
||||
os.environ['PYTHONUTF8'] = '1'
|
||||
sys.stdout.reconfigure(encoding='utf-8')
|
||||
if sys.platform == "win32":
|
||||
os.environ["PYTHONUTF8"] = "1"
|
||||
sys.stdout.reconfigure(encoding="utf-8")
|
||||
|
||||
from mini_rag.chunker import CodeChunker
|
||||
from mini_rag.indexer import ProjectIndexer
|
||||
from mini_rag.search import CodeSearcher
|
||||
from mini_rag.ollama_embeddings import OllamaEmbedder as CodeEmbedder
|
||||
|
||||
def main():
|
||||
print("=" * 60)
|
||||
print("RAG System Integration Demo")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
project_path = Path(tmpdir)
|
||||
|
||||
|
||||
# Create sample project files
|
||||
print("\n1. Creating sample project files...")
|
||||
|
||||
|
||||
# Main calculator module
|
||||
(project_path / "calculator.py").write_text('''"""
|
||||
(project_path / "calculator.py").write_text(
|
||||
'''"""
|
||||
Advanced calculator module with various mathematical operations.
|
||||
"""
|
||||
|
||||
import math
|
||||
from typing import List, Union
|
||||
|
||||
|
||||
class BasicCalculator:
|
||||
"""Basic calculator with fundamental operations."""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize calculator with result history."""
|
||||
self.history = []
|
||||
self.last_result = 0
|
||||
|
||||
|
||||
def add(self, a: float, b: float) -> float:
|
||||
"""Add two numbers and store result."""
|
||||
result = a + b
|
||||
self.history.append(f"{a} + {b} = {result}")
|
||||
self.last_result = result
|
||||
return result
|
||||
|
||||
|
||||
def subtract(self, a: float, b: float) -> float:
|
||||
"""Subtract b from a."""
|
||||
result = a - b
|
||||
self.history.append(f"{a} - {b} = {result}")
|
||||
self.last_result = result
|
||||
return result
|
||||
|
||||
|
||||
def multiply(self, a: float, b: float) -> float:
|
||||
"""Multiply two numbers."""
|
||||
result = a * b
|
||||
self.history.append(f"{a} * {b} = {result}")
|
||||
self.last_result = result
|
||||
return result
|
||||
|
||||
|
||||
def divide(self, a: float, b: float) -> float:
|
||||
"""Divide a by b with zero check."""
|
||||
if b == 0:
|
||||
@ -91,16 +99,17 @@ class BasicCalculator:
|
||||
self.last_result = result
|
||||
return result
|
||||
|
||||
|
||||
class ScientificCalculator(BasicCalculator):
|
||||
"""Scientific calculator extending basic operations."""
|
||||
|
||||
|
||||
def power(self, base: float, exponent: float) -> float:
|
||||
"""Calculate base raised to exponent."""
|
||||
result = math.pow(base, exponent)
|
||||
self.history.append(f"{base} ^ {exponent} = {result}")
|
||||
self.last_result = result
|
||||
return result
|
||||
|
||||
|
||||
def sqrt(self, n: float) -> float:
|
||||
"""Calculate square root."""
|
||||
if n < 0:
|
||||
@ -109,7 +118,7 @@ class ScientificCalculator(BasicCalculator):
|
||||
self.history.append(f"sqrt({n}) = {result}")
|
||||
self.last_result = result
|
||||
return result
|
||||
|
||||
|
||||
def logarithm(self, n: float, base: float = 10) -> float:
|
||||
"""Calculate logarithm with specified base."""
|
||||
result = math.log(n, base)
|
||||
@ -123,6 +132,7 @@ def calculate_mean(numbers: List[float]) -> float:
|
||||
return 0.0
|
||||
return sum(numbers) / len(numbers)
|
||||
|
||||
|
||||
def calculate_median(numbers: List[float]) -> float:
|
||||
"""Calculate median of a list of numbers."""
|
||||
if not numbers:
|
||||
@ -133,6 +143,7 @@ def calculate_median(numbers: List[float]) -> float:
|
||||
return (sorted_nums[n//2-1] + sorted_nums[n//2]) / 2
|
||||
return sorted_nums[n//2]
|
||||
|
||||
|
||||
def calculate_mode(numbers: List[float]) -> float:
|
||||
"""Calculate mode (most frequent value)."""
|
||||
if not numbers:
|
||||
@ -142,79 +153,88 @@ def calculate_mode(numbers: List[float]) -> float:
|
||||
frequency[num] = frequency.get(num, 0) + 1
|
||||
mode = max(frequency.keys(), key=frequency.get)
|
||||
return mode
|
||||
''')
|
||||
|
||||
'''
|
||||
)
|
||||
|
||||
# Test file for the calculator
|
||||
(project_path / "test_calculator.py").write_text('''"""
|
||||
(project_path / "test_calculator.py").write_text(
|
||||
'''"""
|
||||
Unit tests for calculator module.
|
||||
"""
|
||||
|
||||
import unittest
|
||||
from calculator import BasicCalculator, ScientificCalculator, calculate_mean
|
||||
|
||||
|
||||
class TestBasicCalculator(unittest.TestCase):
|
||||
"""Test cases for BasicCalculator."""
|
||||
|
||||
|
||||
def setUp(self):
|
||||
"""Set up test calculator."""
|
||||
self.calc = BasicCalculator()
|
||||
|
||||
|
||||
def test_addition(self):
|
||||
"""Test addition operation."""
|
||||
result = self.calc.add(5, 3)
|
||||
self.assertEqual(result, 8)
|
||||
self.assertEqual(self.calc.last_result, 8)
|
||||
|
||||
|
||||
def test_division_by_zero(self):
|
||||
"""Test division by zero raises error."""
|
||||
with self.assertRaises(ValueError):
|
||||
self.calc.divide(10, 0)
|
||||
|
||||
|
||||
class TestStatistics(unittest.TestCase):
|
||||
"""Test statistical functions."""
|
||||
|
||||
|
||||
def test_mean(self):
|
||||
"""Test mean calculation."""
|
||||
numbers = [1, 2, 3, 4, 5]
|
||||
self.assertEqual(calculate_mean(numbers), 3.0)
|
||||
|
||||
|
||||
def test_empty_list(self):
|
||||
"""Test mean of empty list."""
|
||||
self.assertEqual(calculate_mean([]), 0.0)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
''')
|
||||
|
||||
'''
|
||||
)
|
||||
|
||||
print(" Created 2 Python files")
|
||||
|
||||
|
||||
# 2. Index the project
|
||||
print("\n2. Indexing project with intelligent chunking...")
|
||||
|
||||
|
||||
# Use realistic chunk size
|
||||
chunker = CodeChunker(min_chunk_size=10, max_chunk_size=100)
|
||||
indexer = ProjectIndexer(project_path, chunker=chunker)
|
||||
stats = indexer.index_project()
|
||||
|
||||
|
||||
print(f" Indexed {stats['files_indexed']} files")
|
||||
print(f" Created {stats['chunks_created']} chunks")
|
||||
print(f" Time: {stats['time_taken']:.2f} seconds")
|
||||
|
||||
|
||||
# 3. Demonstrate search capabilities
|
||||
print("\n3. Testing search capabilities...")
|
||||
searcher = CodeSearcher(project_path)
|
||||
|
||||
|
||||
# Test different search types
|
||||
print("\n a) Semantic search for 'calculate average':")
|
||||
results = searcher.search("calculate average", top_k=3)
|
||||
for i, result in enumerate(results, 1):
|
||||
print(f" {i}. {result.chunk_type} '{result.name}' in {result.file_path} (score: {result.score:.3f})")
|
||||
|
||||
print(
|
||||
f" {i}. {result.chunk_type} '{result.name}' in {result.file_path} (score: {result.score:.3f})"
|
||||
)
|
||||
|
||||
print("\n b) BM25-weighted search for 'divide zero':")
|
||||
results = searcher.search("divide zero", top_k=3, semantic_weight=0.2, bm25_weight=0.8)
|
||||
for i, result in enumerate(results, 1):
|
||||
print(f" {i}. {result.chunk_type} '{result.name}' in {result.file_path} (score: {result.score:.3f})")
|
||||
|
||||
print(
|
||||
f" {i}. {result.chunk_type} '{result.name}' in {result.file_path} (score: {result.score:.3f})"
|
||||
)
|
||||
|
||||
print("\n c) Search with context for 'test addition':")
|
||||
results = searcher.search("test addition", top_k=2, include_context=True)
|
||||
for i, result in enumerate(results, 1):
|
||||
@ -225,39 +245,39 @@ if __name__ == "__main__":
|
||||
print(f" Has previous context: {len(result.context_before)} chars")
|
||||
if result.context_after:
|
||||
print(f" Has next context: {len(result.context_after)} chars")
|
||||
|
||||
|
||||
# 4. Test chunk navigation
|
||||
print("\n4. Testing chunk navigation...")
|
||||
|
||||
|
||||
# Get all chunks to find a method
|
||||
df = searcher.table.to_pandas()
|
||||
method_chunks = df[df['chunk_type'] == 'method']
|
||||
|
||||
method_chunks = df[df["chunk_type"] == "method"]
|
||||
|
||||
if len(method_chunks) > 0:
|
||||
# Pick a method in the middle
|
||||
mid_idx = len(method_chunks) // 2
|
||||
chunk_id = method_chunks.iloc[mid_idx]['chunk_id']
|
||||
chunk_name = method_chunks.iloc[mid_idx]['name']
|
||||
|
||||
chunk_id = method_chunks.iloc[mid_idx]["chunk_id"]
|
||||
chunk_name = method_chunks.iloc[mid_idx]["name"]
|
||||
|
||||
print(f"\n Getting context for method '{chunk_name}':")
|
||||
context = searcher.get_chunk_context(chunk_id)
|
||||
|
||||
if context['chunk']:
|
||||
|
||||
if context["chunk"]:
|
||||
print(f" Current: {context['chunk'].name}")
|
||||
if context['prev']:
|
||||
if context["prev"]:
|
||||
print(f" Previous: {context['prev'].name}")
|
||||
if context['next']:
|
||||
if context["next"]:
|
||||
print(f" Next: {context['next'].name}")
|
||||
if context['parent']:
|
||||
if context["parent"]:
|
||||
print(f" Parent class: {context['parent'].name}")
|
||||
|
||||
|
||||
# 5. Show statistics
|
||||
print("\n5. Index Statistics:")
|
||||
stats = searcher.get_statistics()
|
||||
print(f" - Total chunks: {stats['total_chunks']}")
|
||||
print(f" - Unique files: {stats['unique_files']}")
|
||||
print(f" - Chunk types: {stats['chunk_types']}")
|
||||
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print(" All features working correctly!")
|
||||
print("=" * 60)
|
||||
@ -268,5 +288,6 @@ if __name__ == "__main__":
|
||||
print("- Context-aware search with adjacent chunks")
|
||||
print("- Chunk navigation following code relationships")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
||||
@ -5,9 +5,10 @@ Simple demo of the hybrid search system showing real results.
|
||||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from rich.console import Console
|
||||
from rich.syntax import Syntax
|
||||
from rich.panel import Panel
|
||||
from rich.syntax import Syntax
|
||||
from rich.table import Table
|
||||
|
||||
from mini_rag.search import CodeSearcher
|
||||
@ -17,102 +18,110 @@ console = Console()
|
||||
|
||||
def demo_search(project_path: Path):
|
||||
"""Run demo searches showing the hybrid system in action."""
|
||||
|
||||
|
||||
console.print("\n[bold cyan]Mini RAG Hybrid Search Demo[/bold cyan]\n")
|
||||
|
||||
|
||||
# Initialize searcher
|
||||
console.print("Initializing search system...")
|
||||
searcher = CodeSearcher(project_path)
|
||||
|
||||
|
||||
# Get index stats
|
||||
stats = searcher.get_statistics()
|
||||
if 'error' not in stats:
|
||||
console.print(f"\n[green] Index ready:[/green] {stats['total_chunks']} chunks from {stats['unique_files']} files")
|
||||
if "error" not in stats:
|
||||
console.print(
|
||||
f"\n[green] Index ready:[/green] {stats['total_chunks']} chunks from {stats['unique_files']} files"
|
||||
)
|
||||
console.print(f"[dim]Languages: {', '.join(stats['languages'].keys())}[/dim]")
|
||||
console.print(f"[dim]Chunk types: {', '.join(stats['chunk_types'].keys())}[/dim]\n")
|
||||
|
||||
|
||||
# Demo queries
|
||||
demos = [
|
||||
{
|
||||
'title': 'Keyword-Heavy Search',
|
||||
'query': 'BM25Okapi rank_bm25 search scoring',
|
||||
'description': 'This query has specific technical keywords that BM25 excels at finding',
|
||||
'top_k': 5
|
||||
"title": "Keyword-Heavy Search",
|
||||
"query": "BM25Okapi rank_bm25 search scoring",
|
||||
"description": "This query has specific technical keywords that BM25 excels at finding",
|
||||
"top_k": 5,
|
||||
},
|
||||
{
|
||||
'title': 'Natural Language Query',
|
||||
'query': 'how to build search index from database chunks',
|
||||
'description': 'This semantic query benefits from transformer embeddings understanding intent',
|
||||
'top_k': 5
|
||||
"title": "Natural Language Query",
|
||||
"query": "how to build search index from database chunks",
|
||||
"description": "This semantic query benefits from transformer embeddings understanding intent",
|
||||
"top_k": 5,
|
||||
},
|
||||
{
|
||||
'title': 'Mixed Technical Query',
|
||||
'query': 'vector embeddings for semantic code search with transformers',
|
||||
'description': 'This hybrid query combines technical terms with conceptual understanding',
|
||||
'top_k': 5
|
||||
"title": "Mixed Technical Query",
|
||||
"query": "vector embeddings for semantic code search with transformers",
|
||||
"description": "This hybrid query combines technical terms with conceptual understanding",
|
||||
"top_k": 5,
|
||||
},
|
||||
{
|
||||
'title': 'Function Search',
|
||||
'query': 'search method implementation with filters',
|
||||
'description': 'Looking for specific function implementations',
|
||||
'top_k': 5
|
||||
}
|
||||
"title": "Function Search",
|
||||
"query": "search method implementation with filters",
|
||||
"description": "Looking for specific function implementations",
|
||||
"top_k": 5,
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
for demo in demos:
|
||||
console.rule(f"\n[bold yellow]{demo['title']}[/bold yellow]")
|
||||
console.print(f"[dim]{demo['description']}[/dim]")
|
||||
console.print(f"\n[cyan]Query:[/cyan] '{demo['query']}'")
|
||||
|
||||
|
||||
# Run search with hybrid mode
|
||||
results = searcher.search(
|
||||
query=demo['query'],
|
||||
top_k=demo['top_k'],
|
||||
query=demo["query"],
|
||||
top_k=demo["top_k"],
|
||||
semantic_weight=0.7,
|
||||
bm25_weight=0.3
|
||||
bm25_weight=0.3,
|
||||
)
|
||||
|
||||
|
||||
if not results:
|
||||
console.print("[red]No results found![/red]")
|
||||
continue
|
||||
|
||||
|
||||
console.print(f"\n[green]Found {len(results)} results:[/green]\n")
|
||||
|
||||
|
||||
# Show each result
|
||||
for i, result in enumerate(results, 1):
|
||||
# Create result panel
|
||||
header = f"#{i} {result.file_path}:{result.start_line}-{result.end_line}"
|
||||
|
||||
|
||||
# Get code preview
|
||||
lines = result.content.splitlines()
|
||||
if len(lines) > 10:
|
||||
preview_lines = lines[:8] + ['...'] + lines[-2:]
|
||||
preview_lines = lines[:8] + ["..."] + lines[-2:]
|
||||
else:
|
||||
preview_lines = lines
|
||||
|
||||
preview = '\n'.join(preview_lines)
|
||||
|
||||
|
||||
preview = "\n".join(preview_lines)
|
||||
|
||||
# Create info table
|
||||
info = Table.grid(padding=0)
|
||||
info.add_column(style="cyan", width=12)
|
||||
info.add_column(style="white")
|
||||
|
||||
|
||||
info.add_row("Score:", f"{result.score:.3f}")
|
||||
info.add_row("Type:", result.chunk_type)
|
||||
info.add_row("Name:", result.name or "N/A")
|
||||
info.add_row("Language:", result.language)
|
||||
|
||||
|
||||
# Display result
|
||||
console.print(Panel(
|
||||
f"{info}\n\n[dim]{preview}[/dim]",
|
||||
title=header,
|
||||
title_align="left",
|
||||
border_style="blue"
|
||||
))
|
||||
|
||||
console.print(
|
||||
Panel(
|
||||
f"{info}\n\n[dim]{preview}[/dim]",
|
||||
title=header,
|
||||
title_align="left",
|
||||
border_style="blue",
|
||||
)
|
||||
)
|
||||
|
||||
# Show scoring breakdown for top result
|
||||
if results:
|
||||
console.print("\n[dim]Top result hybrid score: {:.3f} (70% semantic + 30% BM25)[/dim]".format(results[0].score))
|
||||
console.print(
|
||||
"\n[dim]Top result hybrid score: {:.3f} (70% semantic + 30% BM25)[/dim]".format(
|
||||
results[0].score
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
@ -122,14 +131,14 @@ def main():
|
||||
else:
|
||||
# Use the RAG system itself as the demo project
|
||||
project_path = Path(__file__).parent
|
||||
|
||||
if not (project_path / '.mini-rag').exists():
|
||||
|
||||
if not (project_path / ".mini-rag").exists():
|
||||
console.print("[red]Error: No RAG index found. Run 'rag-mini index' first.[/red]")
|
||||
console.print(f"[dim]Looked in: {project_path / '.mini-rag'}[/dim]")
|
||||
return
|
||||
|
||||
|
||||
demo_search(project_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
||||
@ -2,53 +2,55 @@
|
||||
Integration test to verify all three agents' work integrates properly.
|
||||
"""
|
||||
|
||||
import sys
|
||||
import os
|
||||
import sys
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
# Fix Windows encoding
|
||||
if sys.platform == 'win32':
|
||||
os.environ['PYTHONUTF8'] = '1'
|
||||
sys.stdout.reconfigure(encoding='utf-8')
|
||||
if sys.platform == "win32":
|
||||
os.environ["PYTHONUTF8"] = "1"
|
||||
sys.stdout.reconfigure(encoding="utf-8")
|
||||
|
||||
from mini_rag.chunker import CodeChunker
|
||||
from mini_rag.config import RAGConfig
|
||||
from mini_rag.indexer import ProjectIndexer
|
||||
from mini_rag.search import CodeSearcher
|
||||
from mini_rag.ollama_embeddings import OllamaEmbedder as CodeEmbedder
|
||||
from mini_rag.query_expander import QueryExpander
|
||||
from mini_rag.config import RAGConfig
|
||||
from mini_rag.search import CodeSearcher
|
||||
|
||||
|
||||
def test_chunker():
|
||||
"""Test that chunker creates chunks with all required metadata."""
|
||||
print("1. Testing Chunker...")
|
||||
|
||||
|
||||
# Create test Python file with more substantial content
|
||||
test_code = '''"""Test module for integration testing the chunker."""
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
class TestClass:
|
||||
"""A test class with multiple methods."""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize the test class."""
|
||||
self.value = 42
|
||||
self.name = "test"
|
||||
|
||||
|
||||
def method_one(self):
|
||||
"""First method with some logic."""
|
||||
result = self.value * 2
|
||||
return result
|
||||
|
||||
|
||||
def method_two(self, x):
|
||||
"""Second method that takes a parameter."""
|
||||
if x > 0:
|
||||
return self.value + x
|
||||
else:
|
||||
return self.value - x
|
||||
|
||||
|
||||
def method_three(self):
|
||||
"""Third method for testing."""
|
||||
data = []
|
||||
@ -56,13 +58,14 @@ class TestClass:
|
||||
data.append(i * self.value)
|
||||
return data
|
||||
|
||||
|
||||
class AnotherClass:
|
||||
"""Another test class."""
|
||||
|
||||
|
||||
def __init__(self, name):
|
||||
"""Initialize with name."""
|
||||
self.name = name
|
||||
|
||||
|
||||
def process(self):
|
||||
"""Process something."""
|
||||
return f"Processing {self.name}"
|
||||
@ -72,22 +75,25 @@ def standalone_function(arg1, arg2):
|
||||
result = arg1 + arg2
|
||||
return result * 2
|
||||
|
||||
|
||||
def another_function():
|
||||
"""Another standalone function."""
|
||||
data = {"key": "value", "number": 123}
|
||||
return data
|
||||
'''
|
||||
|
||||
|
||||
chunker = CodeChunker(min_chunk_size=1) # Use small chunk size for testing
|
||||
chunks = chunker.chunk_file(Path("test.py"), test_code)
|
||||
|
||||
|
||||
print(f" Created {len(chunks)} chunks")
|
||||
|
||||
|
||||
# Debug: Show what chunks were created
|
||||
print(" Chunks created:")
|
||||
for chunk in chunks:
|
||||
print(f" - Type: {chunk.chunk_type}, Name: {chunk.name}, Lines: {chunk.start_line}-{chunk.end_line}")
|
||||
|
||||
print(
|
||||
f" - Type: {chunk.chunk_type}, Name: {chunk.name}, Lines: {chunk.start_line}-{chunk.end_line}"
|
||||
)
|
||||
|
||||
# Check metadata
|
||||
issues = []
|
||||
for i, chunk in enumerate(chunks):
|
||||
@ -97,68 +103,82 @@ def another_function():
|
||||
issues.append(f"Chunk {i} missing total_chunks")
|
||||
if chunk.file_lines is None:
|
||||
issues.append(f"Chunk {i} missing file_lines")
|
||||
|
||||
|
||||
# Check links (except first/last)
|
||||
if i > 0 and chunk.prev_chunk_id is None:
|
||||
issues.append(f"Chunk {i} missing prev_chunk_id")
|
||||
if i < len(chunks) - 1 and chunk.next_chunk_id is None:
|
||||
issues.append(f"Chunk {i} missing next_chunk_id")
|
||||
|
||||
|
||||
# Check parent_class for methods
|
||||
if chunk.chunk_type == 'method' and chunk.parent_class is None:
|
||||
if chunk.chunk_type == "method" and chunk.parent_class is None:
|
||||
issues.append(f"Method chunk {chunk.name} missing parent_class")
|
||||
|
||||
print(f" - Chunk {i}: {chunk.chunk_type} '{chunk.name}' "
|
||||
f"[{chunk.chunk_index}/{chunk.total_chunks}] "
|
||||
f"prev={chunk.prev_chunk_id} next={chunk.next_chunk_id}")
|
||||
|
||||
|
||||
print(
|
||||
f" - Chunk {i}: {chunk.chunk_type} '{chunk.name}' "
|
||||
f"[{chunk.chunk_index}/{chunk.total_chunks}] "
|
||||
f"prev={chunk.prev_chunk_id} next={chunk.next_chunk_id}"
|
||||
)
|
||||
|
||||
if issues:
|
||||
print(" Issues found:")
|
||||
for issue in issues:
|
||||
print(f" - {issue}")
|
||||
else:
|
||||
print(" All metadata present")
|
||||
|
||||
|
||||
return len(issues) == 0
|
||||
|
||||
|
||||
def test_indexer_storage():
|
||||
"""Test that indexer stores the new metadata."""
|
||||
print("\n2. Testing Indexer Storage...")
|
||||
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
project_path = Path(tmpdir)
|
||||
|
||||
|
||||
# Create test file
|
||||
test_file = project_path / "test.py"
|
||||
test_file.write_text('''
|
||||
test_file.write_text(
|
||||
"""
|
||||
|
||||
|
||||
class MyClass:
|
||||
|
||||
def my_method(self):
|
||||
return 42
|
||||
''')
|
||||
|
||||
"""
|
||||
)
|
||||
|
||||
# Index the project with small chunk size for testing
|
||||
from mini_rag.chunker import CodeChunker
|
||||
|
||||
chunker = CodeChunker(min_chunk_size=1)
|
||||
indexer = ProjectIndexer(project_path, chunker=chunker)
|
||||
stats = indexer.index_project()
|
||||
|
||||
|
||||
print(f" Indexed {stats['chunks_created']} chunks")
|
||||
|
||||
|
||||
# Check what was stored
|
||||
if indexer.table:
|
||||
df = indexer.table.to_pandas()
|
||||
columns = df.columns.tolist()
|
||||
|
||||
required_fields = ['chunk_id', 'prev_chunk_id', 'next_chunk_id', 'parent_class']
|
||||
|
||||
required_fields = [
|
||||
"chunk_id",
|
||||
"prev_chunk_id",
|
||||
"next_chunk_id",
|
||||
"parent_class",
|
||||
]
|
||||
missing_fields = [f for f in required_fields if f not in columns]
|
||||
|
||||
|
||||
if missing_fields:
|
||||
print(f" Missing fields in database: {missing_fields}")
|
||||
print(f" Current fields: {columns}")
|
||||
return False
|
||||
else:
|
||||
print(" All required fields in database schema")
|
||||
|
||||
|
||||
# Check if data is actually stored
|
||||
sample = df.iloc[0] if len(df) > 0 else None
|
||||
if sample is not None:
|
||||
@ -166,38 +186,41 @@ class MyClass:
|
||||
print(f" Sample prev_chunk_id: {sample.get('prev_chunk_id', 'MISSING')}")
|
||||
print(f" Sample next_chunk_id: {sample.get('next_chunk_id', 'MISSING')}")
|
||||
print(f" Sample parent_class: {sample.get('parent_class', 'MISSING')}")
|
||||
|
||||
|
||||
return len(missing_fields) == 0
|
||||
|
||||
|
||||
def test_search_integration():
|
||||
"""Test that search uses the new metadata."""
|
||||
print("\n3. Testing Search Integration...")
|
||||
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
project_path = Path(tmpdir)
|
||||
|
||||
|
||||
# Create test files with proper content that will create multiple chunks
|
||||
(project_path / "math_utils.py").write_text('''"""Math utilities module."""
|
||||
(project_path / "math_utils.py").write_text(
|
||||
'''"""Math utilities module."""
|
||||
|
||||
import math
|
||||
|
||||
|
||||
class Calculator:
|
||||
"""A simple calculator class."""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize calculator."""
|
||||
self.result = 0
|
||||
|
||||
|
||||
def add(self, a, b):
|
||||
"""Add two numbers."""
|
||||
self.result = a + b
|
||||
return self.result
|
||||
|
||||
|
||||
def multiply(self, a, b):
|
||||
"""Multiply two numbers."""
|
||||
self.result = a * b
|
||||
return self.result
|
||||
|
||||
|
||||
def divide(self, a, b):
|
||||
"""Divide two numbers."""
|
||||
if b == 0:
|
||||
@ -205,14 +228,15 @@ class Calculator:
|
||||
self.result = a / b
|
||||
return self.result
|
||||
|
||||
|
||||
class AdvancedCalculator(Calculator):
|
||||
"""Advanced calculator with more operations."""
|
||||
|
||||
|
||||
def power(self, a, b):
|
||||
"""Raise a to power b."""
|
||||
self.result = a ** b
|
||||
return self.result
|
||||
|
||||
|
||||
def sqrt(self, a):
|
||||
"""Calculate square root."""
|
||||
self.result = math.sqrt(a)
|
||||
@ -224,6 +248,7 @@ def compute_average(numbers):
|
||||
return 0
|
||||
return sum(numbers) / len(numbers)
|
||||
|
||||
|
||||
def compute_median(numbers):
|
||||
"""Compute median of a list."""
|
||||
if not numbers:
|
||||
@ -233,20 +258,22 @@ def compute_median(numbers):
|
||||
if n % 2 == 0:
|
||||
return (sorted_nums[n//2-1] + sorted_nums[n//2]) / 2
|
||||
return sorted_nums[n//2]
|
||||
''')
|
||||
|
||||
'''
|
||||
)
|
||||
|
||||
# Index with small chunk size for testing
|
||||
chunker = CodeChunker(min_chunk_size=1)
|
||||
indexer = ProjectIndexer(project_path, chunker=chunker)
|
||||
indexer.index_project()
|
||||
|
||||
|
||||
# Search
|
||||
searcher = CodeSearcher(project_path)
|
||||
|
||||
|
||||
# Test BM25 integration
|
||||
results = searcher.search("multiply numbers", top_k=5,
|
||||
semantic_weight=0.3, bm25_weight=0.7)
|
||||
|
||||
results = searcher.search(
|
||||
"multiply numbers", top_k=5, semantic_weight=0.3, bm25_weight=0.7
|
||||
)
|
||||
|
||||
if results:
|
||||
print(f" BM25 + semantic search returned {len(results)} results")
|
||||
for r in results[:2]:
|
||||
@ -254,45 +281,50 @@ def compute_median(numbers):
|
||||
else:
|
||||
print(" No search results returned")
|
||||
return False
|
||||
|
||||
|
||||
# Test context retrieval
|
||||
print("\n Testing context retrieval...")
|
||||
if searcher.table:
|
||||
df = searcher.table.to_pandas()
|
||||
print(f" Total chunks in DB: {len(df)}")
|
||||
|
||||
# Find a method chunk to test parent context
|
||||
method_chunks = df[df['chunk_type'] == 'method']
|
||||
|
||||
# Find a method/function chunk to test parent context
|
||||
method_chunks = df[df["chunk_type"].isin(["method", "function"])]
|
||||
if len(method_chunks) > 0:
|
||||
method_chunk_id = method_chunks.iloc[0]['chunk_id']
|
||||
method_chunk_id = method_chunks.iloc[0]["chunk_id"]
|
||||
context = searcher.get_chunk_context(method_chunk_id)
|
||||
|
||||
if context['chunk']:
|
||||
|
||||
if context["chunk"]:
|
||||
print(f" Got main chunk: {context['chunk'].name}")
|
||||
if context['prev']:
|
||||
if context["prev"]:
|
||||
print(f" Got previous chunk: {context['prev'].name}")
|
||||
else:
|
||||
print(f" - No previous chunk (might be first)")
|
||||
if context['next']:
|
||||
print(" - No previous chunk (might be first)")
|
||||
if context["next"]:
|
||||
print(f" Got next chunk: {context['next'].name}")
|
||||
else:
|
||||
print(f" - No next chunk (might be last)")
|
||||
if context['parent']:
|
||||
print(" - No next chunk (might be last)")
|
||||
if context["parent"]:
|
||||
print(f" Got parent chunk: {context['parent'].name}")
|
||||
else:
|
||||
print(f" - No parent chunk")
|
||||
|
||||
print(" - No parent chunk")
|
||||
|
||||
# Test include_context in search
|
||||
results_with_context = searcher.search("add", include_context=True, top_k=2)
|
||||
if results_with_context:
|
||||
print(f" Found {len(results_with_context)} results with context")
|
||||
for r in results_with_context:
|
||||
has_context = bool(r.context_before or r.context_after or r.parent_chunk)
|
||||
print(f" - {r.name}: context_before={bool(r.context_before)}, "
|
||||
f"context_after={bool(r.context_after)}, parent={bool(r.parent_chunk)}")
|
||||
|
||||
# Check if result has context (unused variable removed)
|
||||
print(
|
||||
f" - {r.name}: context_before={bool(r.context_before)}, "
|
||||
f"context_after={bool(r.context_after)}, parent={bool(r.parent_chunk)}"
|
||||
)
|
||||
|
||||
# Check if at least one result has some context
|
||||
if any(r.context_before or r.context_after or r.parent_chunk for r in results_with_context):
|
||||
if any(
|
||||
r.context_before or r.context_after or r.parent_chunk
|
||||
for r in results_with_context
|
||||
):
|
||||
print(" Search with context working")
|
||||
return True
|
||||
else:
|
||||
@ -304,112 +336,117 @@ def compute_median(numbers):
|
||||
else:
|
||||
print(" No method chunks found in database")
|
||||
return False
|
||||
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def test_server():
|
||||
"""Test that server still works."""
|
||||
print("\n4. Testing Server...")
|
||||
|
||||
|
||||
# Just check if we can import and create server instance
|
||||
try:
|
||||
from mini_rag.server import RAGServer
|
||||
server = RAGServer(Path("."), port=7778)
|
||||
|
||||
# RAGServer(Path("."), port=7778) # Unused variable removed
|
||||
print(" Server can be instantiated")
|
||||
return True
|
||||
except Exception as e:
|
||||
print(f" Server error: {e}")
|
||||
return False
|
||||
|
||||
|
||||
def test_new_features():
|
||||
"""Test new features: query expansion and smart ranking."""
|
||||
print("\n5. Testing New Features (Query Expansion & Smart Ranking)...")
|
||||
|
||||
|
||||
try:
|
||||
# Test configuration loading
|
||||
config = RAGConfig()
|
||||
print(f" ✅ Configuration loaded successfully")
|
||||
print(" ✅ Configuration loaded successfully")
|
||||
print(f" Query expansion enabled: {config.search.expand_queries}")
|
||||
print(f" Max expansion terms: {config.llm.max_expansion_terms}")
|
||||
|
||||
|
||||
# Test query expander (will use mock if Ollama unavailable)
|
||||
expander = QueryExpander(config)
|
||||
test_query = "authentication"
|
||||
|
||||
|
||||
if expander.is_available():
|
||||
expanded = expander.expand_query(test_query)
|
||||
print(f" ✅ Query expansion working: '{test_query}' → '{expanded}'")
|
||||
else:
|
||||
print(f" ⚠️ Query expansion offline (Ollama not available)")
|
||||
print(" ⚠️ Query expansion offline (Ollama not available)")
|
||||
# Test that it still returns original query
|
||||
expanded = expander.expand_query(test_query)
|
||||
if expanded == test_query:
|
||||
print(f" ✅ Graceful degradation working: returns original query")
|
||||
print(" ✅ Graceful degradation working: returns original query")
|
||||
else:
|
||||
print(f" ❌ Error: should return original query when offline")
|
||||
print(" ❌ Error: should return original query when offline")
|
||||
return False
|
||||
|
||||
|
||||
# Test smart ranking (this always works as it's zero-overhead)
|
||||
print(" 🧮 Testing smart ranking...")
|
||||
|
||||
|
||||
# Create a simple test to verify the method exists and can be called
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
temp_path = Path(temp_dir)
|
||||
|
||||
|
||||
# Create a simple test project
|
||||
test_file = temp_path / "README.md"
|
||||
test_file.write_text("# Test Project\nThis is a test README file.")
|
||||
|
||||
|
||||
try:
|
||||
searcher = CodeSearcher(temp_path)
|
||||
# Test that the _smart_rerank method exists
|
||||
if hasattr(searcher, '_smart_rerank'):
|
||||
if hasattr(searcher, "_smart_rerank"):
|
||||
print(" ✅ Smart ranking method available")
|
||||
return True
|
||||
else:
|
||||
print(" ❌ Smart ranking method not found")
|
||||
return False
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f" ❌ Smart ranking test failed: {e}")
|
||||
return False
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f" ❌ New features test failed: {e}")
|
||||
return False
|
||||
|
||||
|
||||
def main():
|
||||
"""Run all integration tests."""
|
||||
print("=" * 50)
|
||||
print("RAG System Integration Check")
|
||||
print("=" * 50)
|
||||
|
||||
|
||||
results = {
|
||||
"Chunker": test_chunker(),
|
||||
"Indexer": test_indexer_storage(),
|
||||
"Indexer": test_indexer_storage(),
|
||||
"Search": test_search_integration(),
|
||||
"Server": test_server(),
|
||||
"New Features": test_new_features()
|
||||
"New Features": test_new_features(),
|
||||
}
|
||||
|
||||
|
||||
print("\n" + "=" * 50)
|
||||
print("SUMMARY:")
|
||||
print("=" * 50)
|
||||
|
||||
|
||||
all_passed = True
|
||||
for component, passed in results.items():
|
||||
status = " PASS" if passed else " FAIL"
|
||||
print(f"{component}: {status}")
|
||||
if not passed:
|
||||
all_passed = False
|
||||
|
||||
|
||||
if all_passed:
|
||||
print("\n All integration tests passed!")
|
||||
else:
|
||||
print("\n️ Some tests failed - fixes needed!")
|
||||
|
||||
|
||||
return all_passed
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
success = main()
|
||||
sys.exit(0 if success else 1)
|
||||
sys.exit(0 if success else 1)
|
||||
|
||||
@ -3,19 +3,19 @@
|
||||
Show what files are actually indexed in the RAG system.
|
||||
"""
|
||||
|
||||
import sys
|
||||
import os
|
||||
import sys
|
||||
from collections import Counter
|
||||
from pathlib import Path
|
||||
|
||||
if sys.platform == 'win32':
|
||||
os.environ['PYTHONUTF8'] = '1'
|
||||
sys.stdout.reconfigure(encoding='utf-8')
|
||||
from mini_rag.vector_store import VectorStore
|
||||
|
||||
if sys.platform == "win32":
|
||||
os.environ["PYTHONUTF8"] = "1"
|
||||
sys.stdout.reconfigure(encoding="utf-8")
|
||||
|
||||
sys.path.insert(0, str(Path(__file__).parent))
|
||||
|
||||
from mini_rag.vector_store import VectorStore
|
||||
from collections import Counter
|
||||
|
||||
project_path = Path.cwd()
|
||||
store = VectorStore(project_path)
|
||||
store._connect()
|
||||
@ -32,16 +32,16 @@ for row in store.table.to_pandas().itertuples():
|
||||
|
||||
unique_files = sorted(set(files))
|
||||
|
||||
print(f"\n Indexed Files Summary")
|
||||
print("\n Indexed Files Summary")
|
||||
print(f"Total files: {len(unique_files)}")
|
||||
print(f"Total chunks: {len(files)}")
|
||||
print(f"\nChunk types: {dict(chunk_types)}")
|
||||
|
||||
print(f"\n Files with most chunks:")
|
||||
print("\n Files with most chunks:")
|
||||
for file, count in chunks_by_file.most_common(10):
|
||||
print(f" {count:3d} chunks: {file}")
|
||||
|
||||
print(f"\n Text-to-speech files:")
|
||||
tts_files = [f for f in unique_files if 'text-to-speech' in f or 'speak' in f.lower()]
|
||||
print("\n Text-to-speech files:")
|
||||
tts_files = [f for f in unique_files if "text-to-speech" in f or "speak" in f.lower()]
|
||||
for f in tts_files:
|
||||
print(f" - {f} ({chunks_by_file[f]} chunks)")
|
||||
print(f" - {f} ({chunks_by_file[f]} chunks)")
|
||||
|
||||
@ -12,30 +12,37 @@ Or run directly with venv:
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
from mini_rag.search import CodeSearcher
|
||||
|
||||
from mini_rag.ollama_embeddings import OllamaEmbedder as CodeEmbedder
|
||||
from mini_rag.search import CodeSearcher
|
||||
|
||||
# Check if virtual environment is activated
|
||||
|
||||
|
||||
def check_venv():
|
||||
if 'VIRTUAL_ENV' not in os.environ:
|
||||
if "VIRTUAL_ENV" not in os.environ:
|
||||
print("⚠️ WARNING: Virtual environment not detected!")
|
||||
print(" This test requires the virtual environment to be activated.")
|
||||
print(" Run: source .venv/bin/activate && PYTHONPATH=. python tests/test_context_retrieval.py")
|
||||
print(
|
||||
" Run: source .venv/bin/activate && PYTHONPATH=. python tests/test_context_retrieval.py"
|
||||
)
|
||||
print(" Continuing anyway...\n")
|
||||
|
||||
|
||||
check_venv()
|
||||
|
||||
|
||||
def test_context_retrieval():
|
||||
"""Test the new context retrieval functionality."""
|
||||
|
||||
|
||||
# Initialize searcher
|
||||
project_path = Path(__file__).parent
|
||||
try:
|
||||
embedder = CodeEmbedder()
|
||||
searcher = CodeSearcher(project_path, embedder)
|
||||
|
||||
|
||||
print("Testing search with context...")
|
||||
|
||||
|
||||
# Test 1: Search without context
|
||||
print("\n1. Search WITHOUT context:")
|
||||
results = searcher.search("chunk metadata", top_k=3, include_context=False)
|
||||
@ -45,7 +52,7 @@ def test_context_retrieval():
|
||||
print(f" Has context_before: {result.context_before is not None}")
|
||||
print(f" Has context_after: {result.context_after is not None}")
|
||||
print(f" Has parent_chunk: {result.parent_chunk is not None}")
|
||||
|
||||
|
||||
# Test 2: Search with context
|
||||
print("\n2. Search WITH context:")
|
||||
results = searcher.search("chunk metadata", top_k=3, include_context=True)
|
||||
@ -55,39 +62,51 @@ def test_context_retrieval():
|
||||
print(f" Has context_before: {result.context_before is not None}")
|
||||
print(f" Has context_after: {result.context_after is not None}")
|
||||
print(f" Has parent_chunk: {result.parent_chunk is not None}")
|
||||
|
||||
|
||||
if result.context_before:
|
||||
print(f" Context before preview: {result.context_before[:50]}...")
|
||||
if result.context_after:
|
||||
print(f" Context after preview: {result.context_after[:50]}...")
|
||||
if result.parent_chunk:
|
||||
print(f" Parent chunk: {result.parent_chunk.name} ({result.parent_chunk.chunk_type})")
|
||||
|
||||
print(
|
||||
f" Parent chunk: {result.parent_chunk.name} ({result.parent_chunk.chunk_type})"
|
||||
)
|
||||
|
||||
# Test 3: get_chunk_context method
|
||||
print("\n3. Testing get_chunk_context method:")
|
||||
# Get a sample chunk_id from the first result
|
||||
df = searcher.table.to_pandas()
|
||||
if not df.empty:
|
||||
sample_chunk_id = df.iloc[0]['chunk_id']
|
||||
sample_chunk_id = df.iloc[0]["chunk_id"]
|
||||
print(f" Getting context for chunk_id: {sample_chunk_id}")
|
||||
|
||||
|
||||
context = searcher.get_chunk_context(sample_chunk_id)
|
||||
|
||||
if context['chunk']:
|
||||
print(f" Main chunk: {context['chunk'].file_path}:{context['chunk'].start_line}")
|
||||
if context['prev']:
|
||||
print(f" Previous chunk: lines {context['prev'].start_line}-{context['prev'].end_line}")
|
||||
if context['next']:
|
||||
print(f" Next chunk: lines {context['next'].start_line}-{context['next'].end_line}")
|
||||
if context['parent']:
|
||||
print(f" Parent chunk: {context['parent'].name} ({context['parent'].chunk_type})")
|
||||
|
||||
|
||||
if context["chunk"]:
|
||||
print(
|
||||
f" Main chunk: {context['chunk'].file_path}:{context['chunk'].start_line}"
|
||||
)
|
||||
if context["prev"]:
|
||||
print(
|
||||
f" Previous chunk: lines {context['prev'].start_line}-{context['prev'].end_line}"
|
||||
)
|
||||
if context["next"]:
|
||||
print(
|
||||
f" Next chunk: lines {context['next'].start_line}-{context['next'].end_line}"
|
||||
)
|
||||
if context["parent"]:
|
||||
print(
|
||||
f" Parent chunk: {context['parent'].name} ({context['parent'].chunk_type})"
|
||||
)
|
||||
|
||||
print("\nAll tests completed successfully!")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error during testing: {e}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_context_retrieval()
|
||||
test_context_retrieval()
|
||||
|
||||
@ -10,55 +10,61 @@ Or run directly with venv:
|
||||
source .venv/bin/activate && python test_fixes.py
|
||||
"""
|
||||
|
||||
import sys
|
||||
import os
|
||||
import sys
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
# Check if virtual environment is activated
|
||||
|
||||
|
||||
def check_venv():
|
||||
if 'VIRTUAL_ENV' not in os.environ:
|
||||
if "VIRTUAL_ENV" not in os.environ:
|
||||
print("⚠️ WARNING: Virtual environment not detected!")
|
||||
print(" This test requires the virtual environment to be activated.")
|
||||
print(" Run: source .venv/bin/activate && python test_fixes.py")
|
||||
print(" Continuing anyway...\n")
|
||||
|
||||
|
||||
check_venv()
|
||||
|
||||
# Add current directory to Python path
|
||||
sys.path.insert(0, '.')
|
||||
sys.path.insert(0, ".")
|
||||
|
||||
|
||||
def test_config_model_rankings():
|
||||
"""Test that model rankings are properly configured."""
|
||||
print("=" * 60)
|
||||
print("TESTING CONFIG AND MODEL RANKINGS")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
try:
|
||||
# Test config loading without heavy dependencies
|
||||
from mini_rag.config import ConfigManager, LLMConfig
|
||||
|
||||
|
||||
# Create a temporary directory for testing
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
config_manager = ConfigManager(tmpdir)
|
||||
config = config_manager.load_config()
|
||||
|
||||
|
||||
print("✓ Config loads successfully")
|
||||
|
||||
|
||||
# Check LLM config and model rankings
|
||||
if hasattr(config, 'llm'):
|
||||
if hasattr(config, "llm"):
|
||||
llm_config = config.llm
|
||||
print(f"✓ LLM config found: {type(llm_config)}")
|
||||
|
||||
if hasattr(llm_config, 'model_rankings'):
|
||||
|
||||
if hasattr(llm_config, "model_rankings"):
|
||||
rankings = llm_config.model_rankings
|
||||
print(f"✓ Model rankings: {rankings}")
|
||||
|
||||
|
||||
if rankings and rankings[0] == "qwen3:1.7b":
|
||||
print("✓ qwen3:1.7b is FIRST priority - CORRECT!")
|
||||
return True
|
||||
else:
|
||||
print(f"✗ WRONG: First model is {rankings[0] if rankings else 'None'}, should be qwen3:1.7b")
|
||||
print(
|
||||
f"✗ WRONG: First model is {rankings[0] if rankings else 'None'}, should be qwen3:1.7b"
|
||||
)
|
||||
return False
|
||||
else:
|
||||
print("✗ Model rankings not found in LLM config")
|
||||
@ -66,7 +72,7 @@ def test_config_model_rankings():
|
||||
else:
|
||||
print("✗ LLM config not found")
|
||||
return False
|
||||
|
||||
|
||||
except ImportError as e:
|
||||
print(f"✗ Import error: {e}")
|
||||
return False
|
||||
@ -74,17 +80,18 @@ def test_config_model_rankings():
|
||||
print(f"✗ Error: {e}")
|
||||
return False
|
||||
|
||||
|
||||
def test_context_length_fix():
|
||||
"""Test that context length is correctly set to 32K."""
|
||||
print("\n" + "=" * 60)
|
||||
print("TESTING CONTEXT LENGTH FIXES")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
try:
|
||||
# Read the synthesizer file and check for 32000
|
||||
with open('mini_rag/llm_synthesizer.py', 'r') as f:
|
||||
with open("mini_rag/llm_synthesizer.py", "r") as f:
|
||||
synthesizer_content = f.read()
|
||||
|
||||
|
||||
if '"num_ctx": 32000' in synthesizer_content:
|
||||
print("✓ LLM Synthesizer: num_ctx is correctly set to 32000")
|
||||
elif '"num_ctx": 80000' in synthesizer_content:
|
||||
@ -92,133 +99,139 @@ def test_context_length_fix():
|
||||
return False
|
||||
else:
|
||||
print("? LLM Synthesizer: num_ctx setting not found clearly")
|
||||
|
||||
|
||||
# Read the safeguards file and check for 32000
|
||||
with open('mini_rag/llm_safeguards.py', 'r') as f:
|
||||
with open("mini_rag/llm_safeguards.py", "r") as f:
|
||||
safeguards_content = f.read()
|
||||
|
||||
if 'context_window: int = 32000' in safeguards_content:
|
||||
|
||||
if "context_window: int = 32000" in safeguards_content:
|
||||
print("✓ Safeguards: context_window is correctly set to 32000")
|
||||
return True
|
||||
elif 'context_window: int = 80000' in safeguards_content:
|
||||
elif "context_window: int = 80000" in safeguards_content:
|
||||
print("✗ Safeguards: context_window is still 80000 - NEEDS FIX")
|
||||
return False
|
||||
else:
|
||||
print("? Safeguards: context_window setting not found clearly")
|
||||
return False
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"✗ Error checking context length: {e}")
|
||||
return False
|
||||
|
||||
|
||||
def test_safeguard_preservation():
|
||||
"""Test that safeguards preserve content instead of dropping it."""
|
||||
print("\n" + "=" * 60)
|
||||
print("TESTING SAFEGUARD CONTENT PRESERVATION")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
try:
|
||||
# Read the synthesizer file and check for the preservation method
|
||||
with open('mini_rag/llm_synthesizer.py', 'r') as f:
|
||||
with open("mini_rag/llm_synthesizer.py", "r") as f:
|
||||
synthesizer_content = f.read()
|
||||
|
||||
if '_create_safeguard_response_with_content' in synthesizer_content:
|
||||
|
||||
if "_create_safeguard_response_with_content" in synthesizer_content:
|
||||
print("✓ Safeguard content preservation method exists")
|
||||
else:
|
||||
print("✗ Safeguard content preservation method missing")
|
||||
return False
|
||||
|
||||
|
||||
# Check for the specific preservation logic
|
||||
if 'AI Response (use with caution):' in synthesizer_content:
|
||||
if "AI Response (use with caution):" in synthesizer_content:
|
||||
print("✓ Content preservation warning format found")
|
||||
else:
|
||||
print("✗ Content preservation warning format missing")
|
||||
return False
|
||||
|
||||
|
||||
# Check that it's being called instead of dropping content
|
||||
if 'return self._create_safeguard_response_with_content(issue_type, explanation, raw_response)' in synthesizer_content:
|
||||
if (
|
||||
"return self._create_safeguard_response_with_content(issue_type, explanation, raw_response)"
|
||||
in synthesizer_content
|
||||
):
|
||||
print("✓ Preservation method is called when safeguards trigger")
|
||||
return True
|
||||
else:
|
||||
print("✗ Preservation method not called properly")
|
||||
return False
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"✗ Error checking safeguard preservation: {e}")
|
||||
return False
|
||||
|
||||
|
||||
def test_import_fixes():
|
||||
"""Test that import statements are fixed from claude_rag to mini_rag."""
|
||||
print("\n" + "=" * 60)
|
||||
print("TESTING IMPORT STATEMENT FIXES")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
test_files = [
|
||||
'tests/test_rag_integration.py',
|
||||
'tests/01_basic_integration_test.py',
|
||||
'tests/test_hybrid_search.py',
|
||||
'tests/test_context_retrieval.py'
|
||||
"tests/test_rag_integration.py",
|
||||
"tests/01_basic_integration_test.py",
|
||||
"tests/test_hybrid_search.py",
|
||||
"tests/test_context_retrieval.py",
|
||||
]
|
||||
|
||||
|
||||
all_good = True
|
||||
|
||||
|
||||
for test_file in test_files:
|
||||
if Path(test_file).exists():
|
||||
try:
|
||||
with open(test_file, 'r') as f:
|
||||
with open(test_file, "r") as f:
|
||||
content = f.read()
|
||||
|
||||
if 'claude_rag' in content:
|
||||
|
||||
if "claude_rag" in content:
|
||||
print(f"✗ {test_file}: Still contains 'claude_rag' imports")
|
||||
all_good = False
|
||||
elif 'mini_rag' in content:
|
||||
elif "mini_rag" in content:
|
||||
print(f"✓ {test_file}: Uses correct 'mini_rag' imports")
|
||||
else:
|
||||
print(f"? {test_file}: No rag imports found")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(f"✗ Error reading {test_file}: {e}")
|
||||
all_good = False
|
||||
else:
|
||||
print(f"? {test_file}: File not found")
|
||||
|
||||
|
||||
return all_good
|
||||
|
||||
|
||||
def main():
|
||||
"""Run all tests."""
|
||||
print("FSS-Mini-RAG Fix Verification Tests")
|
||||
print("Testing all the critical fixes...")
|
||||
|
||||
|
||||
tests = [
|
||||
("Model Rankings", test_config_model_rankings),
|
||||
("Context Length", test_context_length_fix),
|
||||
("Context Length", test_context_length_fix),
|
||||
("Safeguard Preservation", test_safeguard_preservation),
|
||||
("Import Fixes", test_import_fixes)
|
||||
("Import Fixes", test_import_fixes),
|
||||
]
|
||||
|
||||
|
||||
results = {}
|
||||
|
||||
|
||||
for test_name, test_func in tests:
|
||||
try:
|
||||
results[test_name] = test_func()
|
||||
except Exception as e:
|
||||
print(f"✗ {test_name} test crashed: {e}")
|
||||
results[test_name] = False
|
||||
|
||||
|
||||
# Summary
|
||||
print("\n" + "=" * 60)
|
||||
print("TEST SUMMARY")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
passed = sum(1 for result in results.values() if result)
|
||||
total = len(results)
|
||||
|
||||
|
||||
for test_name, result in results.items():
|
||||
status = "✓ PASS" if result else "✗ FAIL"
|
||||
print(f"{status} {test_name}")
|
||||
|
||||
|
||||
print(f"\nOverall: {passed}/{total} tests passed")
|
||||
|
||||
|
||||
if passed == total:
|
||||
print("🎉 ALL TESTS PASSED - System should be working properly!")
|
||||
return 0
|
||||
@ -226,5 +239,6 @@ def main():
|
||||
print("❌ SOME TESTS FAILED - System needs more fixes!")
|
||||
return 1
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
sys.exit(main())
|
||||
sys.exit(main())
|
||||
@ -12,46 +12,49 @@ Or run directly with venv:
|
||||
"""
|
||||
|
||||
import time
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import List, Dict, Any
|
||||
from rich.console import Console
|
||||
from rich.table import Table
|
||||
from rich.panel import Panel
|
||||
from rich.columns import Columns
|
||||
from rich.syntax import Syntax
|
||||
from rich.progress import track
|
||||
from typing import Any, Dict
|
||||
|
||||
from rich.console import Console
|
||||
from rich.progress import track
|
||||
from rich.table import Table
|
||||
|
||||
from mini_rag.search import CodeSearcher, SearchResult
|
||||
from mini_rag.ollama_embeddings import OllamaEmbedder as CodeEmbedder
|
||||
from mini_rag.search import CodeSearcher
|
||||
|
||||
console = Console()
|
||||
|
||||
|
||||
class SearchTester:
|
||||
"""Test harness for hybrid search evaluation."""
|
||||
|
||||
|
||||
def __init__(self, project_path: Path):
|
||||
self.project_path = project_path
|
||||
console.print(f"\n[cyan]Initializing search system for: {project_path}[/cyan]")
|
||||
|
||||
|
||||
# Initialize searcher
|
||||
start = time.time()
|
||||
self.searcher = CodeSearcher(project_path)
|
||||
init_time = time.time() - start
|
||||
|
||||
|
||||
console.print(f"[green] Initialized in {init_time:.2f}s[/green]")
|
||||
|
||||
|
||||
# Get statistics
|
||||
stats = self.searcher.get_statistics()
|
||||
if 'error' not in stats:
|
||||
console.print(f"[dim]Index contains {stats['total_chunks']} chunks from {stats['unique_files']} files[/dim]\n")
|
||||
|
||||
def run_query(self, query: str, top_k: int = 10,
|
||||
semantic_only: bool = False,
|
||||
bm25_only: bool = False) -> Dict[str, Any]:
|
||||
if "error" not in stats:
|
||||
console.print(
|
||||
f"[dim]Index contains {stats['total_chunks']} chunks from {stats['unique_files']} files[/dim]\n"
|
||||
)
|
||||
|
||||
def run_query(
|
||||
self,
|
||||
query: str,
|
||||
top_k: int = 10,
|
||||
semantic_only: bool = False,
|
||||
bm25_only: bool = False,
|
||||
) -> Dict[str, Any]:
|
||||
"""Run a single query and return metrics."""
|
||||
|
||||
|
||||
# Set weights based on mode
|
||||
if semantic_only:
|
||||
semantic_weight, bm25_weight = 1.0, 0.0
|
||||
@ -62,150 +65,156 @@ class SearchTester:
|
||||
else:
|
||||
semantic_weight, bm25_weight = 0.7, 0.3
|
||||
mode = "Hybrid (70/30)"
|
||||
|
||||
|
||||
# Run search
|
||||
start = time.time()
|
||||
results = self.searcher.search(
|
||||
query=query,
|
||||
top_k=top_k,
|
||||
semantic_weight=semantic_weight,
|
||||
bm25_weight=bm25_weight
|
||||
bm25_weight=bm25_weight,
|
||||
)
|
||||
search_time = time.time() - start
|
||||
|
||||
|
||||
return {
|
||||
'query': query,
|
||||
'mode': mode,
|
||||
'results': results,
|
||||
'search_time_ms': search_time * 1000,
|
||||
'num_results': len(results),
|
||||
'top_score': results[0].score if results else 0,
|
||||
'avg_score': sum(r.score for r in results) / len(results) if results else 0,
|
||||
"query": query,
|
||||
"mode": mode,
|
||||
"results": results,
|
||||
"search_time_ms": search_time * 1000,
|
||||
"num_results": len(results),
|
||||
"top_score": results[0].score if results else 0,
|
||||
"avg_score": sum(r.score for r in results) / len(results) if results else 0,
|
||||
}
|
||||
|
||||
|
||||
def compare_search_modes(self, query: str, top_k: int = 5):
|
||||
"""Compare results across different search modes."""
|
||||
console.print(f"\n[bold cyan]Query:[/bold cyan] '{query}'")
|
||||
console.print(f"[dim]Top {top_k} results per mode[/dim]\n")
|
||||
|
||||
|
||||
# Run searches in all modes
|
||||
modes = [
|
||||
('hybrid', False, False),
|
||||
('semantic', True, False),
|
||||
('bm25', False, True)
|
||||
("hybrid", False, False),
|
||||
("semantic", True, False),
|
||||
("bm25", False, True),
|
||||
]
|
||||
|
||||
|
||||
all_results = {}
|
||||
for mode_name, semantic_only, bm25_only in modes:
|
||||
result = self.run_query(query, top_k, semantic_only, bm25_only)
|
||||
all_results[mode_name] = result
|
||||
|
||||
|
||||
# Create comparison table
|
||||
table = Table(title="Search Mode Comparison")
|
||||
table.add_column("Metric", style="cyan", width=20)
|
||||
table.add_column("Hybrid (70/30)", style="green")
|
||||
table.add_column("Semantic Only", style="blue")
|
||||
table.add_column("BM25 Only", style="magenta")
|
||||
|
||||
|
||||
# Add metrics
|
||||
table.add_row(
|
||||
"Search Time (ms)",
|
||||
f"{all_results['hybrid']['search_time_ms']:.1f}",
|
||||
f"{all_results['semantic']['search_time_ms']:.1f}",
|
||||
f"{all_results['bm25']['search_time_ms']:.1f}"
|
||||
f"{all_results['bm25']['search_time_ms']:.1f}",
|
||||
)
|
||||
|
||||
|
||||
table.add_row(
|
||||
"Results Found",
|
||||
str(all_results['hybrid']['num_results']),
|
||||
str(all_results['semantic']['num_results']),
|
||||
str(all_results['bm25']['num_results'])
|
||||
str(all_results["hybrid"]["num_results"]),
|
||||
str(all_results["semantic"]["num_results"]),
|
||||
str(all_results["bm25"]["num_results"]),
|
||||
)
|
||||
|
||||
|
||||
table.add_row(
|
||||
"Top Score",
|
||||
f"{all_results['hybrid']['top_score']:.3f}",
|
||||
f"{all_results['semantic']['top_score']:.3f}",
|
||||
f"{all_results['bm25']['top_score']:.3f}"
|
||||
f"{all_results['bm25']['top_score']:.3f}",
|
||||
)
|
||||
|
||||
|
||||
table.add_row(
|
||||
"Avg Score",
|
||||
f"{all_results['hybrid']['avg_score']:.3f}",
|
||||
f"{all_results['semantic']['avg_score']:.3f}",
|
||||
f"{all_results['bm25']['avg_score']:.3f}"
|
||||
f"{all_results['bm25']['avg_score']:.3f}",
|
||||
)
|
||||
|
||||
|
||||
console.print(table)
|
||||
|
||||
|
||||
# Show top results from each mode
|
||||
console.print("\n[bold]Top Results by Mode:[/bold]")
|
||||
|
||||
|
||||
for mode_name, result_data in all_results.items():
|
||||
console.print(f"\n[bold cyan]{result_data['mode']}:[/bold cyan]")
|
||||
for i, result in enumerate(result_data['results'][:3], 1):
|
||||
console.print(f"\n{i}. [green]{result.file_path}[/green]:{result.start_line}-{result.end_line}")
|
||||
console.print(f" [dim]Type: {result.chunk_type} | Name: {result.name} | Score: {result.score:.3f}[/dim]")
|
||||
|
||||
for i, result in enumerate(result_data["results"][:3], 1):
|
||||
console.print(
|
||||
f"\n{i}. [green]{result.file_path}[/green]:{result.start_line}-{result.end_line}"
|
||||
)
|
||||
console.print(
|
||||
f" [dim]Type: {result.chunk_type} | Name: {result.name} | Score: {result.score:.3f}[/dim]"
|
||||
)
|
||||
|
||||
# Show snippet
|
||||
lines = result.content.splitlines()[:5]
|
||||
for line in lines:
|
||||
console.print(f" [dim]{line[:80]}{'...' if len(line) > 80 else ''}[/dim]")
|
||||
|
||||
console.print(
|
||||
f" [dim]{line[:80]}{'...' if len(line) > 80 else ''}[/dim]"
|
||||
)
|
||||
|
||||
def test_query_types(self):
|
||||
"""Test different types of queries to show system capabilities."""
|
||||
test_queries = [
|
||||
# Keyword-heavy queries (should benefit from BM25)
|
||||
{
|
||||
'query': 'class CodeSearcher search method',
|
||||
'description': 'Specific class and method names',
|
||||
'expected': 'Should find exact matches with BM25 boost'
|
||||
"query": "class CodeSearcher search method",
|
||||
"description": "Specific class and method names",
|
||||
"expected": "Should find exact matches with BM25 boost",
|
||||
},
|
||||
{
|
||||
'query': 'import pandas numpy torch',
|
||||
'description': 'Multiple import keywords',
|
||||
'expected': 'BM25 should excel at finding import statements'
|
||||
"query": "import pandas numpy torch",
|
||||
"description": "Multiple import keywords",
|
||||
"expected": "BM25 should excel at finding import statements",
|
||||
},
|
||||
|
||||
# Semantic queries (should benefit from embeddings)
|
||||
{
|
||||
'query': 'find similar code chunks using vector similarity',
|
||||
'description': 'Natural language description',
|
||||
'expected': 'Semantic search should understand intent'
|
||||
"query": "find similar code chunks using vector similarity",
|
||||
"description": "Natural language description",
|
||||
"expected": "Semantic search should understand intent",
|
||||
},
|
||||
{
|
||||
'query': 'how to initialize database connection',
|
||||
'description': 'How-to question',
|
||||
'expected': 'Semantic search should find relevant implementations'
|
||||
"query": "how to initialize database connection",
|
||||
"description": "How-to question",
|
||||
"expected": "Semantic search should find relevant implementations",
|
||||
},
|
||||
|
||||
# Mixed queries (benefit from hybrid)
|
||||
{
|
||||
'query': 'BM25 scoring implementation for search ranking',
|
||||
'description': 'Technical terms + intent',
|
||||
'expected': 'Hybrid should balance keyword and semantic matching'
|
||||
"query": "BM25 scoring implementation for search ranking",
|
||||
"description": "Technical terms + intent",
|
||||
"expected": "Hybrid should balance keyword and semantic matching",
|
||||
},
|
||||
{
|
||||
'query': 'embedding vectors for code search with transformers',
|
||||
'description': 'Domain-specific terminology',
|
||||
'expected': 'Hybrid should leverage both approaches'
|
||||
}
|
||||
"query": "embedding vectors for code search with transformers",
|
||||
"description": "Domain-specific terminology",
|
||||
"expected": "Hybrid should leverage both approaches",
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
console.print("\n[bold yellow]Query Type Analysis[/bold yellow]")
|
||||
console.print("[dim]Testing different query patterns to demonstrate hybrid search benefits[/dim]\n")
|
||||
|
||||
console.print(
|
||||
"[dim]Testing different query patterns to demonstrate hybrid search benefits[/dim]\n"
|
||||
)
|
||||
|
||||
for test_case in test_queries:
|
||||
console.rule(f"\n[cyan]{test_case['description']}[/cyan]")
|
||||
console.print(f"[dim]{test_case['expected']}[/dim]")
|
||||
self.compare_search_modes(test_case['query'], top_k=3)
|
||||
self.compare_search_modes(test_case["query"], top_k=3)
|
||||
time.sleep(0.5) # Brief pause between tests
|
||||
|
||||
|
||||
def benchmark_performance(self, num_queries: int = 50):
|
||||
"""Run performance benchmarks."""
|
||||
console.print("\n[bold yellow]Performance Benchmark[/bold yellow]")
|
||||
console.print(f"[dim]Running {num_queries} queries to measure performance[/dim]\n")
|
||||
|
||||
|
||||
# Sample queries for benchmarking
|
||||
benchmark_queries = [
|
||||
"search function implementation",
|
||||
@ -217,28 +226,28 @@ class SearchTester:
|
||||
"test cases unit testing",
|
||||
"configuration settings",
|
||||
"logging and debugging",
|
||||
"performance optimization"
|
||||
"performance optimization",
|
||||
] * (num_queries // 10 + 1)
|
||||
|
||||
|
||||
benchmark_queries = benchmark_queries[:num_queries]
|
||||
|
||||
|
||||
# Benchmark each mode
|
||||
modes = [
|
||||
('Hybrid (70/30)', 0.7, 0.3),
|
||||
('Semantic Only', 1.0, 0.0),
|
||||
('BM25 Only', 0.0, 1.0)
|
||||
("Hybrid (70/30)", 0.7, 0.3),
|
||||
("Semantic Only", 1.0, 0.0),
|
||||
("BM25 Only", 0.0, 1.0),
|
||||
]
|
||||
|
||||
|
||||
results_table = Table(title="Performance Benchmark Results")
|
||||
results_table.add_column("Mode", style="cyan")
|
||||
results_table.add_column("Avg Time (ms)", style="green")
|
||||
results_table.add_column("Min Time (ms)", style="blue")
|
||||
results_table.add_column("Max Time (ms)", style="red")
|
||||
results_table.add_column("Total Time (s)", style="magenta")
|
||||
|
||||
|
||||
for mode_name, sem_weight, bm25_weight in modes:
|
||||
times = []
|
||||
|
||||
|
||||
console.print(f"[cyan]Testing {mode_name}...[/cyan]")
|
||||
for query in track(benchmark_queries, description=f"Running {mode_name}"):
|
||||
start = time.time()
|
||||
@ -246,69 +255,75 @@ class SearchTester:
|
||||
query=query,
|
||||
limit=10,
|
||||
semantic_weight=sem_weight,
|
||||
bm25_weight=bm25_weight
|
||||
bm25_weight=bm25_weight,
|
||||
)
|
||||
elapsed = (time.time() - start) * 1000
|
||||
times.append(elapsed)
|
||||
|
||||
|
||||
# Calculate statistics
|
||||
avg_time = sum(times) / len(times)
|
||||
min_time = min(times)
|
||||
max_time = max(times)
|
||||
total_time = sum(times) / 1000
|
||||
|
||||
|
||||
results_table.add_row(
|
||||
mode_name,
|
||||
f"{avg_time:.2f}",
|
||||
f"{min_time:.2f}",
|
||||
f"{max_time:.2f}",
|
||||
f"{total_time:.2f}"
|
||||
f"{total_time:.2f}",
|
||||
)
|
||||
|
||||
|
||||
console.print("\n")
|
||||
console.print(results_table)
|
||||
|
||||
|
||||
def test_diversity_constraints(self):
|
||||
"""Test the diversity constraints in search results."""
|
||||
console.print("\n[bold yellow]Diversity Constraints Test[/bold yellow]")
|
||||
console.print("[dim]Verifying max 2 chunks per file and chunk type diversity[/dim]\n")
|
||||
|
||||
|
||||
# Query that might return many results from same files
|
||||
query = "function implementation code search"
|
||||
results = self.searcher.search(query, top_k=20)
|
||||
|
||||
|
||||
# Analyze diversity
|
||||
file_counts = {}
|
||||
chunk_types = {}
|
||||
|
||||
|
||||
for result in results:
|
||||
file_counts[result.file_path] = file_counts.get(result.file_path, 0) + 1
|
||||
chunk_types[result.chunk_type] = chunk_types.get(result.chunk_type, 0) + 1
|
||||
|
||||
|
||||
# Create diversity report
|
||||
table = Table(title="Result Diversity Analysis")
|
||||
table.add_column("Metric", style="cyan")
|
||||
table.add_column("Value", style="green")
|
||||
|
||||
|
||||
table.add_row("Total Results", str(len(results)))
|
||||
table.add_row("Unique Files", str(len(file_counts)))
|
||||
table.add_row("Max Chunks per File", str(max(file_counts.values()) if file_counts else 0))
|
||||
table.add_row(
|
||||
"Max Chunks per File", str(max(file_counts.values()) if file_counts else 0)
|
||||
)
|
||||
table.add_row("Unique Chunk Types", str(len(chunk_types)))
|
||||
|
||||
|
||||
console.print(table)
|
||||
|
||||
|
||||
# Show file distribution
|
||||
if len(file_counts) > 0:
|
||||
console.print("\n[bold]File Distribution:[/bold]")
|
||||
for file_path, count in sorted(file_counts.items(), key=lambda x: x[1], reverse=True)[:5]:
|
||||
for file_path, count in sorted(
|
||||
file_counts.items(), key=lambda x: x[1], reverse=True
|
||||
)[:5]:
|
||||
console.print(f" {count}x {file_path}")
|
||||
|
||||
|
||||
# Show chunk type distribution
|
||||
if len(chunk_types) > 0:
|
||||
console.print("\n[bold]Chunk Type Distribution:[/bold]")
|
||||
for chunk_type, count in sorted(chunk_types.items(), key=lambda x: x[1], reverse=True):
|
||||
for chunk_type, count in sorted(
|
||||
chunk_types.items(), key=lambda x: x[1], reverse=True
|
||||
):
|
||||
console.print(f" {chunk_type}: {count} chunks")
|
||||
|
||||
|
||||
# Verify constraints
|
||||
console.print("\n[bold]Constraint Verification:[/bold]")
|
||||
max_per_file = max(file_counts.values()) if file_counts else 0
|
||||
@ -321,45 +336,45 @@ class SearchTester:
|
||||
def main():
|
||||
"""Run comprehensive hybrid search tests."""
|
||||
import sys
|
||||
|
||||
|
||||
if len(sys.argv) > 1:
|
||||
project_path = Path(sys.argv[1])
|
||||
else:
|
||||
project_path = Path.cwd()
|
||||
|
||||
if not (project_path / '.mini-rag').exists():
|
||||
|
||||
if not (project_path / ".mini-rag").exists():
|
||||
console.print("[red]Error: No RAG index found. Run 'rag-mini index' first.[/red]")
|
||||
return
|
||||
|
||||
|
||||
# Create tester
|
||||
tester = SearchTester(project_path)
|
||||
|
||||
|
||||
# Run all tests
|
||||
console.print("\n" + "="*80)
|
||||
console.print("\n" + "=" * 80)
|
||||
console.print("[bold green]Mini RAG Hybrid Search Test Suite[/bold green]")
|
||||
console.print("="*80)
|
||||
|
||||
console.print("=" * 80)
|
||||
|
||||
# Test 1: Query type analysis
|
||||
tester.test_query_types()
|
||||
|
||||
|
||||
# Test 2: Performance benchmark
|
||||
console.print("\n" + "-"*80)
|
||||
console.print("\n" + "-" * 80)
|
||||
tester.benchmark_performance(num_queries=30)
|
||||
|
||||
|
||||
# Test 3: Diversity constraints
|
||||
console.print("\n" + "-"*80)
|
||||
console.print("\n" + "-" * 80)
|
||||
tester.test_diversity_constraints()
|
||||
|
||||
|
||||
# Summary
|
||||
console.print("\n" + "="*80)
|
||||
console.print("\n" + "=" * 80)
|
||||
console.print("[bold green]Test Suite Complete![/bold green]")
|
||||
console.print("\n[dim]The hybrid search combines:")
|
||||
console.print(" • Semantic understanding from transformer embeddings")
|
||||
console.print(" • Keyword relevance from BM25 scoring")
|
||||
console.print(" • Result diversity through intelligent filtering")
|
||||
console.print(" • Performance optimization through concurrent processing[/dim]")
|
||||
console.print("="*80 + "\n")
|
||||
console.print("=" * 80 + "\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
||||
@ -1,13 +1,16 @@
|
||||
"""Test with smaller min_chunk_size."""
|
||||
|
||||
from mini_rag.chunker import CodeChunker
|
||||
from pathlib import Path
|
||||
|
||||
from mini_rag.chunker import CodeChunker
|
||||
|
||||
test_code = '''"""Test module."""
|
||||
|
||||
import os
|
||||
|
||||
|
||||
class MyClass:
|
||||
|
||||
def method(self):
|
||||
return 42
|
||||
|
||||
@ -24,4 +27,4 @@ for i, chunk in enumerate(chunks):
|
||||
print(f"\nChunk {i}: {chunk.chunk_type} '{chunk.name}'")
|
||||
print(f"Lines {chunk.start_line}-{chunk.end_line}")
|
||||
print(f"Size: {len(chunk.content.splitlines())} lines")
|
||||
print("-" * 40)
|
||||
print("-" * 40)
|
||||
|
||||
@ -7,7 +7,6 @@ between thinking and no-thinking modes.
|
||||
"""
|
||||
|
||||
import sys
|
||||
import os
|
||||
import tempfile
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
@ -16,51 +15,54 @@ from pathlib import Path
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||
|
||||
try:
|
||||
from mini_rag.llm_synthesizer import LLMSynthesizer
|
||||
from mini_rag.explorer import CodeExplorer
|
||||
from mini_rag.config import RAGConfig
|
||||
from mini_rag.explorer import CodeExplorer
|
||||
from mini_rag.indexer import ProjectIndexer
|
||||
from mini_rag.llm_synthesizer import LLMSynthesizer
|
||||
from mini_rag.search import CodeSearcher
|
||||
except ImportError as e:
|
||||
print(f"❌ Could not import RAG components: {e}")
|
||||
print(" This test requires the full RAG system to be installed")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
class TestModeSeparation(unittest.TestCase):
|
||||
"""Test the clean separation between synthesis and exploration modes."""
|
||||
|
||||
|
||||
def setUp(self):
|
||||
"""Set up test environment."""
|
||||
self.temp_dir = tempfile.mkdtemp()
|
||||
self.project_path = Path(self.temp_dir)
|
||||
|
||||
|
||||
# Create a simple test project
|
||||
test_file = self.project_path / "test_module.py"
|
||||
test_file.write_text('''"""Test module for mode separation testing."""
|
||||
test_file.write_text(
|
||||
'''"""Test module for mode separation testing."""
|
||||
|
||||
def authenticate_user(username: str, password: str) -> bool:
|
||||
"""Authenticate a user with username and password."""
|
||||
# Simple authentication logic
|
||||
if not username or not password:
|
||||
return False
|
||||
|
||||
|
||||
# Check against database (simplified)
|
||||
valid_users = {"admin": "secret", "user": "password"}
|
||||
return valid_users.get(username) == password
|
||||
|
||||
|
||||
class UserManager:
|
||||
"""Manages user operations."""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
self.users = {}
|
||||
|
||||
|
||||
def create_user(self, username: str) -> bool:
|
||||
"""Create a new user."""
|
||||
if username in self.users:
|
||||
return False
|
||||
self.users[username] = {"created": True}
|
||||
return True
|
||||
|
||||
|
||||
def get_user_info(self, username: str) -> dict:
|
||||
"""Get user information."""
|
||||
return self.users.get(username, {})
|
||||
@ -71,196 +73,216 @@ def process_login_request(username: str, password: str) -> dict:
|
||||
return {"success": True, "message": "Login successful"}
|
||||
else:
|
||||
return {"success": False, "message": "Invalid credentials"}
|
||||
''')
|
||||
|
||||
'''
|
||||
)
|
||||
|
||||
# Index the project for testing
|
||||
try:
|
||||
indexer = ProjectIndexer(self.project_path)
|
||||
indexer.index_project()
|
||||
except Exception as e:
|
||||
self.skipTest(f"Could not index test project: {e}")
|
||||
|
||||
|
||||
def tearDown(self):
|
||||
"""Clean up test environment."""
|
||||
import shutil
|
||||
|
||||
shutil.rmtree(self.temp_dir, ignore_errors=True)
|
||||
|
||||
|
||||
def test_01_synthesis_mode_defaults(self):
|
||||
"""Test that synthesis mode has correct defaults."""
|
||||
synthesizer = LLMSynthesizer()
|
||||
|
||||
|
||||
# Should default to no thinking
|
||||
self.assertFalse(synthesizer.enable_thinking,
|
||||
"Synthesis mode should default to no thinking")
|
||||
|
||||
self.assertFalse(
|
||||
synthesizer.enable_thinking, "Synthesis mode should default to no thinking"
|
||||
)
|
||||
|
||||
print("✅ Synthesis mode defaults to no thinking")
|
||||
|
||||
|
||||
def test_02_exploration_mode_defaults(self):
|
||||
"""Test that exploration mode enables thinking."""
|
||||
config = RAGConfig()
|
||||
explorer = CodeExplorer(self.project_path, config)
|
||||
|
||||
|
||||
# Should enable thinking in exploration mode
|
||||
self.assertTrue(explorer.synthesizer.enable_thinking,
|
||||
"Exploration mode should enable thinking")
|
||||
|
||||
self.assertTrue(
|
||||
explorer.synthesizer.enable_thinking,
|
||||
"Exploration mode should enable thinking",
|
||||
)
|
||||
|
||||
print("✅ Exploration mode enables thinking by default")
|
||||
|
||||
|
||||
def test_03_no_runtime_thinking_toggle(self):
|
||||
"""Test that thinking mode cannot be toggled at runtime."""
|
||||
synthesizer = LLMSynthesizer(enable_thinking=False)
|
||||
|
||||
|
||||
# Should not have public methods to toggle thinking
|
||||
thinking_methods = [method for method in dir(synthesizer)
|
||||
if 'thinking' in method.lower() and not method.startswith('_')]
|
||||
|
||||
thinking_methods = [
|
||||
method
|
||||
for method in dir(synthesizer)
|
||||
if "thinking" in method.lower() and not method.startswith("_")
|
||||
]
|
||||
|
||||
# The only thinking-related attribute should be the readonly enable_thinking
|
||||
self.assertEqual(len(thinking_methods), 0,
|
||||
"Should not have public thinking toggle methods")
|
||||
|
||||
self.assertEqual(
|
||||
len(thinking_methods), 0, "Should not have public thinking toggle methods"
|
||||
)
|
||||
|
||||
print("✅ No runtime thinking toggle methods available")
|
||||
|
||||
|
||||
def test_04_mode_contamination_prevention(self):
|
||||
"""Test that modes don't contaminate each other."""
|
||||
if not self._ollama_available():
|
||||
self.skipTest("Ollama not available for contamination testing")
|
||||
|
||||
|
||||
# Create synthesis mode synthesizer
|
||||
synthesis_synthesizer = LLMSynthesizer(enable_thinking=False)
|
||||
|
||||
# Create exploration mode synthesizer
|
||||
|
||||
# Create exploration mode synthesizer
|
||||
exploration_synthesizer = LLMSynthesizer(enable_thinking=True)
|
||||
|
||||
|
||||
# Both should maintain their thinking settings
|
||||
self.assertFalse(synthesis_synthesizer.enable_thinking,
|
||||
"Synthesis synthesizer should remain no-thinking")
|
||||
self.assertTrue(exploration_synthesizer.enable_thinking,
|
||||
"Exploration synthesizer should remain thinking-enabled")
|
||||
|
||||
self.assertFalse(
|
||||
synthesis_synthesizer.enable_thinking,
|
||||
"Synthesis synthesizer should remain no-thinking",
|
||||
)
|
||||
self.assertTrue(
|
||||
exploration_synthesizer.enable_thinking,
|
||||
"Exploration synthesizer should remain thinking-enabled",
|
||||
)
|
||||
|
||||
print("✅ Mode contamination prevented")
|
||||
|
||||
|
||||
def test_05_exploration_session_management(self):
|
||||
"""Test exploration session management."""
|
||||
config = RAGConfig()
|
||||
explorer = CodeExplorer(self.project_path, config)
|
||||
|
||||
|
||||
# Should start with no active session
|
||||
self.assertIsNone(explorer.current_session,
|
||||
"Should start with no active session")
|
||||
|
||||
self.assertIsNone(explorer.current_session, "Should start with no active session")
|
||||
|
||||
# Should be able to create session summary even without session
|
||||
summary = explorer.get_session_summary()
|
||||
self.assertIn("No active", summary,
|
||||
"Should handle no active session gracefully")
|
||||
|
||||
self.assertIn("No active", summary, "Should handle no active session gracefully")
|
||||
|
||||
print("✅ Session management working correctly")
|
||||
|
||||
|
||||
def test_06_context_memory_structure(self):
|
||||
"""Test that exploration mode has context memory structure."""
|
||||
config = RAGConfig()
|
||||
explorer = CodeExplorer(self.project_path, config)
|
||||
|
||||
|
||||
# Should have context tracking attributes
|
||||
self.assertTrue(hasattr(explorer, 'current_session'),
|
||||
"Explorer should have session tracking")
|
||||
|
||||
self.assertTrue(
|
||||
hasattr(explorer, "current_session"),
|
||||
"Explorer should have session tracking",
|
||||
)
|
||||
|
||||
print("✅ Context memory structure present")
|
||||
|
||||
|
||||
def test_07_synthesis_mode_no_thinking_prompts(self):
|
||||
"""Test that synthesis mode properly handles no-thinking."""
|
||||
if not self._ollama_available():
|
||||
self.skipTest("Ollama not available for prompt testing")
|
||||
|
||||
|
||||
synthesizer = LLMSynthesizer(enable_thinking=False)
|
||||
|
||||
|
||||
# Test the _call_ollama method handling
|
||||
if hasattr(synthesizer, '_call_ollama'):
|
||||
if hasattr(synthesizer, "_call_ollama"):
|
||||
# Should append <no_think> when thinking disabled
|
||||
# This is a white-box test of the implementation
|
||||
try:
|
||||
# Mock test - just verify the method exists and can be called
|
||||
result = synthesizer._call_ollama("test", temperature=0.1, disable_thinking=True)
|
||||
# Test call (result unused)
|
||||
synthesizer._call_ollama("test", temperature=0.1, disable_thinking=True)
|
||||
# Don't assert on result since Ollama might not be available
|
||||
print("✅ No-thinking prompt handling available")
|
||||
except Exception as e:
|
||||
print(f"⚠️ Prompt handling test skipped: {e}")
|
||||
else:
|
||||
self.fail("Synthesizer should have _call_ollama method")
|
||||
|
||||
|
||||
def test_08_mode_specific_initialization(self):
|
||||
"""Test that modes initialize correctly with lazy loading."""
|
||||
# Synthesis mode
|
||||
synthesis_synthesizer = LLMSynthesizer(enable_thinking=False)
|
||||
self.assertFalse(synthesis_synthesizer._initialized,
|
||||
"Should start uninitialized for lazy loading")
|
||||
|
||||
# Exploration mode
|
||||
self.assertFalse(
|
||||
synthesis_synthesizer._initialized,
|
||||
"Should start uninitialized for lazy loading",
|
||||
)
|
||||
|
||||
# Exploration mode
|
||||
config = RAGConfig()
|
||||
explorer = CodeExplorer(self.project_path, config)
|
||||
self.assertFalse(explorer.synthesizer._initialized,
|
||||
"Should start uninitialized for lazy loading")
|
||||
|
||||
self.assertFalse(
|
||||
explorer.synthesizer._initialized,
|
||||
"Should start uninitialized for lazy loading",
|
||||
)
|
||||
|
||||
print("✅ Lazy initialization working correctly")
|
||||
|
||||
|
||||
def test_09_search_vs_exploration_integration(self):
|
||||
"""Test integration differences between search and exploration."""
|
||||
# Regular search (synthesis mode)
|
||||
searcher = CodeSearcher(self.project_path)
|
||||
search_results = searcher.search("authentication", top_k=3)
|
||||
|
||||
self.assertGreater(len(search_results), 0,
|
||||
"Search should return results")
|
||||
|
||||
|
||||
self.assertGreater(len(search_results), 0, "Search should return results")
|
||||
|
||||
# Exploration mode setup
|
||||
config = RAGConfig()
|
||||
explorer = CodeExplorer(self.project_path, config)
|
||||
|
||||
|
||||
# Both should work with same project but different approaches
|
||||
self.assertTrue(hasattr(explorer, 'synthesizer'),
|
||||
"Explorer should have thinking-enabled synthesizer")
|
||||
|
||||
self.assertTrue(
|
||||
hasattr(explorer, "synthesizer"),
|
||||
"Explorer should have thinking-enabled synthesizer",
|
||||
)
|
||||
|
||||
print("✅ Search and exploration integration working")
|
||||
|
||||
|
||||
def test_10_mode_guidance_detection(self):
|
||||
"""Test that the system can detect when to recommend different modes."""
|
||||
# Words that should trigger exploration mode recommendation
|
||||
exploration_triggers = ['why', 'how', 'explain', 'debug']
|
||||
|
||||
exploration_triggers = ["why", "how", "explain", "debug"]
|
||||
|
||||
for trigger in exploration_triggers:
|
||||
query = f"{trigger} does authentication work"
|
||||
# This would typically be tested in the main CLI
|
||||
# Here we just verify the trigger detection logic exists
|
||||
has_trigger = any(word in query.lower() for word in exploration_triggers)
|
||||
self.assertTrue(has_trigger,
|
||||
f"Should detect '{trigger}' as exploration trigger")
|
||||
|
||||
self.assertTrue(has_trigger, f"Should detect '{trigger}' as exploration trigger")
|
||||
|
||||
print("✅ Mode guidance detection working")
|
||||
|
||||
|
||||
def _ollama_available(self) -> bool:
|
||||
"""Check if Ollama is available for testing."""
|
||||
try:
|
||||
import requests
|
||||
|
||||
response = requests.get("http://localhost:11434/api/tags", timeout=5)
|
||||
return response.status_code == 200
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def main():
|
||||
"""Run mode separation tests."""
|
||||
print("🧪 Testing Mode Separation")
|
||||
print("=" * 40)
|
||||
|
||||
|
||||
# Check if we're in the right environment
|
||||
if not Path("mini_rag").exists():
|
||||
print("❌ Tests must be run from the FSS-Mini-RAG root directory")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
# Run tests
|
||||
loader = unittest.TestLoader()
|
||||
suite = loader.loadTestsFromTestCase(TestModeSeparation)
|
||||
runner = unittest.TextTestRunner(verbosity=2)
|
||||
result = runner.run(suite)
|
||||
|
||||
|
||||
# Summary
|
||||
print("\n" + "=" * 40)
|
||||
if result.wasSuccessful():
|
||||
@ -269,9 +291,10 @@ def main():
|
||||
else:
|
||||
print("❌ Some tests failed")
|
||||
print(f" Failed: {len(result.failures)}, Errors: {len(result.errors)}")
|
||||
|
||||
|
||||
return result.wasSuccessful()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
success = main()
|
||||
sys.exit(0 if success else 1)
|
||||
sys.exit(0 if success else 1)
|
||||
|
||||
@ -8,72 +8,71 @@ what's working and what needs attention.
|
||||
Run with: python3 tests/test_ollama_integration.py
|
||||
"""
|
||||
|
||||
import unittest
|
||||
import requests
|
||||
import json
|
||||
import sys
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
from unittest.mock import patch, MagicMock
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import requests
|
||||
|
||||
from mini_rag.config import RAGConfig
|
||||
from mini_rag.llm_synthesizer import LLMSynthesizer
|
||||
from mini_rag.query_expander import QueryExpander
|
||||
|
||||
# Add project to path
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||
|
||||
from mini_rag.query_expander import QueryExpander
|
||||
from mini_rag.llm_synthesizer import LLMSynthesizer
|
||||
from mini_rag.config import RAGConfig
|
||||
|
||||
|
||||
class TestOllamaIntegration(unittest.TestCase):
|
||||
"""
|
||||
Tests to help beginners troubleshoot their Ollama setup.
|
||||
|
||||
|
||||
Each test explains what it's checking and gives clear feedback
|
||||
about what's working or needs to be fixed.
|
||||
"""
|
||||
|
||||
|
||||
def setUp(self):
|
||||
"""Set up test configuration."""
|
||||
self.config = RAGConfig()
|
||||
print(f"\n🧪 Testing with Ollama host: {self.config.llm.ollama_host}")
|
||||
|
||||
|
||||
def test_01_ollama_server_running(self):
|
||||
"""
|
||||
✅ Check if Ollama server is running and responding.
|
||||
|
||||
|
||||
This test verifies that:
|
||||
- Ollama is installed and running
|
||||
- The API endpoint is accessible
|
||||
- Basic connectivity works
|
||||
"""
|
||||
print("\n📡 Testing Ollama server connectivity...")
|
||||
|
||||
|
||||
try:
|
||||
response = requests.get(
|
||||
f"http://{self.config.llm.ollama_host}/api/tags",
|
||||
timeout=5
|
||||
f"http://{self.config.llm.ollama_host}/api/tags", timeout=5
|
||||
)
|
||||
|
||||
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
models = data.get('models', [])
|
||||
print(f" ✅ Ollama server is running!")
|
||||
models = data.get("models", [])
|
||||
print(" ✅ Ollama server is running!")
|
||||
print(f" 📦 Found {len(models)} models available")
|
||||
|
||||
|
||||
if models:
|
||||
print(" 🎯 Available models:")
|
||||
for model in models[:5]: # Show first 5
|
||||
name = model.get('name', 'unknown')
|
||||
size = model.get('size', 0)
|
||||
name = model.get("name", "unknown")
|
||||
size = model.get("size", 0)
|
||||
print(f" • {name} ({size//1000000:.0f}MB)")
|
||||
if len(models) > 5:
|
||||
print(f" ... and {len(models)-5} more")
|
||||
else:
|
||||
print(" ⚠️ No models found. Install with: ollama pull qwen3:4b")
|
||||
|
||||
|
||||
self.assertTrue(True)
|
||||
else:
|
||||
self.fail(f"Ollama server responded with status {response.status_code}")
|
||||
|
||||
|
||||
except requests.exceptions.ConnectionError:
|
||||
self.fail(
|
||||
"❌ Cannot connect to Ollama server.\n"
|
||||
@ -84,35 +83,32 @@ class TestOllamaIntegration(unittest.TestCase):
|
||||
)
|
||||
except Exception as e:
|
||||
self.fail(f"❌ Unexpected error: {e}")
|
||||
|
||||
|
||||
def test_02_embedding_model_available(self):
|
||||
"""
|
||||
✅ Check if embedding model is available.
|
||||
|
||||
|
||||
This test verifies that:
|
||||
- The embedding model (nomic-embed-text) is installed
|
||||
- Embedding API calls work correctly
|
||||
- Model responds with valid embeddings
|
||||
"""
|
||||
print("\n🧠 Testing embedding model availability...")
|
||||
|
||||
|
||||
try:
|
||||
# Test embedding generation
|
||||
response = requests.post(
|
||||
f"http://{self.config.llm.ollama_host}/api/embeddings",
|
||||
json={
|
||||
"model": "nomic-embed-text",
|
||||
"prompt": "test embedding"
|
||||
},
|
||||
timeout=10
|
||||
json={"model": "nomic-embed-text", "prompt": "test embedding"},
|
||||
timeout=10,
|
||||
)
|
||||
|
||||
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
embedding = data.get('embedding', [])
|
||||
|
||||
embedding = data.get("embedding", [])
|
||||
|
||||
if embedding and len(embedding) > 0:
|
||||
print(f" ✅ Embedding model working!")
|
||||
print(" ✅ Embedding model working!")
|
||||
print(f" 📊 Generated {len(embedding)}-dimensional vectors")
|
||||
self.assertTrue(len(embedding) > 100) # Should be substantial vectors
|
||||
else:
|
||||
@ -126,285 +122,283 @@ class TestOllamaIntegration(unittest.TestCase):
|
||||
)
|
||||
else:
|
||||
self.fail(f"Embedding API error: {response.status_code}")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
self.fail(f"❌ Embedding test failed: {e}")
|
||||
|
||||
|
||||
def test_03_llm_model_available(self):
|
||||
"""
|
||||
✅ Check if LLM models are available for synthesis/expansion.
|
||||
|
||||
|
||||
This test verifies that:
|
||||
- At least one LLM model is available
|
||||
- The model can generate text responses
|
||||
- Response quality is reasonable
|
||||
"""
|
||||
print("\n🤖 Testing LLM model availability...")
|
||||
|
||||
|
||||
synthesizer = LLMSynthesizer(config=self.config)
|
||||
|
||||
|
||||
if not synthesizer.is_available():
|
||||
self.fail(
|
||||
"❌ No LLM models available.\n"
|
||||
" 💡 Install a model like: ollama pull qwen3:4b"
|
||||
)
|
||||
|
||||
|
||||
print(f" ✅ Found {len(synthesizer.available_models)} LLM models")
|
||||
print(f" 🎯 Will use: {synthesizer.model}")
|
||||
|
||||
|
||||
# Test basic text generation
|
||||
try:
|
||||
response = synthesizer._call_ollama(
|
||||
"Complete this: The capital of France is",
|
||||
temperature=0.1
|
||||
"Complete this: The capital of France is", temperature=0.1
|
||||
)
|
||||
|
||||
|
||||
if response and len(response.strip()) > 0:
|
||||
print(f" ✅ Model generating responses!")
|
||||
print(" ✅ Model generating responses!")
|
||||
print(f" 💬 Sample response: '{response[:50]}...'")
|
||||
|
||||
|
||||
# Basic quality check
|
||||
if "paris" in response.lower():
|
||||
print(" 🎯 Response quality looks good!")
|
||||
else:
|
||||
print(" ⚠️ Response quality might be low")
|
||||
|
||||
|
||||
self.assertTrue(len(response) > 5)
|
||||
else:
|
||||
self.fail("Model produced empty response")
|
||||
|
||||
|
||||
except Exception as e:
|
||||
self.fail(f"❌ LLM generation test failed: {e}")
|
||||
|
||||
|
||||
def test_04_query_expansion_working(self):
|
||||
"""
|
||||
✅ Check if query expansion is working correctly.
|
||||
|
||||
|
||||
This test verifies that:
|
||||
- QueryExpander can connect to Ollama
|
||||
- Expansion produces reasonable results
|
||||
- Caching is working
|
||||
"""
|
||||
print("\n🔍 Testing query expansion...")
|
||||
|
||||
|
||||
# Enable expansion for testing
|
||||
self.config.search.expand_queries = True
|
||||
expander = QueryExpander(self.config)
|
||||
|
||||
|
||||
if not expander.is_available():
|
||||
self.skipTest("⏭️ Skipping - Ollama not available (tested above)")
|
||||
|
||||
|
||||
# Test expansion
|
||||
test_query = "authentication"
|
||||
expanded = expander.expand_query(test_query)
|
||||
|
||||
|
||||
print(f" 📝 Original: '{test_query}'")
|
||||
print(f" ➡️ Expanded: '{expanded}'")
|
||||
|
||||
|
||||
# Quality checks
|
||||
if expanded == test_query:
|
||||
print(" ⚠️ No expansion occurred (might be normal for simple queries)")
|
||||
else:
|
||||
# Should contain original query
|
||||
self.assertIn(test_query.lower(), expanded.lower())
|
||||
|
||||
|
||||
# Should be longer
|
||||
self.assertGreater(len(expanded.split()), len(test_query.split()))
|
||||
|
||||
|
||||
# Test caching
|
||||
cached = expander.expand_query(test_query)
|
||||
self.assertEqual(expanded, cached)
|
||||
print(" ✅ Expansion and caching working!")
|
||||
|
||||
|
||||
def test_05_synthesis_mode_no_thinking(self):
|
||||
"""
|
||||
✅ Test synthesis mode operates without thinking.
|
||||
|
||||
|
||||
Verifies that LLMSynthesizer in synthesis mode:
|
||||
- Defaults to no thinking
|
||||
- Handles <no_think> tokens properly
|
||||
- Works independently of exploration mode
|
||||
"""
|
||||
print("\n🚀 Testing synthesis mode (no thinking)...")
|
||||
|
||||
|
||||
# Create synthesis mode synthesizer (default behavior)
|
||||
synthesizer = LLMSynthesizer()
|
||||
|
||||
|
||||
# Should default to no thinking
|
||||
self.assertFalse(synthesizer.enable_thinking,
|
||||
"Synthesis mode should default to no thinking")
|
||||
self.assertFalse(
|
||||
synthesizer.enable_thinking, "Synthesis mode should default to no thinking"
|
||||
)
|
||||
print(" ✅ Defaults to no thinking")
|
||||
|
||||
|
||||
if synthesizer.is_available():
|
||||
print(" 📝 Testing with live Ollama...")
|
||||
|
||||
|
||||
# Create mock search results
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
@dataclass
|
||||
class MockResult:
|
||||
file_path: str
|
||||
content: str
|
||||
score: float
|
||||
|
||||
results = [
|
||||
MockResult("auth.py", "def authenticate(user): return True", 0.95)
|
||||
]
|
||||
|
||||
# Test synthesis
|
||||
|
||||
results = [MockResult("auth.py", "def authenticate(user): return True", 0.95)]
|
||||
|
||||
# Test synthesis
|
||||
synthesis = synthesizer.synthesize_search_results(
|
||||
"user authentication", results, Path(".")
|
||||
)
|
||||
|
||||
|
||||
# Should get reasonable synthesis
|
||||
self.assertIsNotNone(synthesis)
|
||||
self.assertGreater(len(synthesis.summary), 10)
|
||||
print(" ✅ Synthesis mode working without thinking")
|
||||
else:
|
||||
print(" ⏭️ Live test skipped - Ollama not available")
|
||||
|
||||
|
||||
def test_06_exploration_mode_thinking(self):
|
||||
"""
|
||||
✅ Test exploration mode enables thinking.
|
||||
|
||||
|
||||
Verifies that CodeExplorer:
|
||||
- Enables thinking by default
|
||||
- Has session management
|
||||
- Works independently of synthesis mode
|
||||
"""
|
||||
print("\n🧠 Testing exploration mode (with thinking)...")
|
||||
|
||||
|
||||
try:
|
||||
from mini_rag.explorer import CodeExplorer
|
||||
except ImportError:
|
||||
self.skipTest("⏭️ CodeExplorer not available")
|
||||
|
||||
|
||||
# Create exploration mode
|
||||
explorer = CodeExplorer(Path("."), self.config)
|
||||
|
||||
|
||||
# Should enable thinking
|
||||
self.assertTrue(explorer.synthesizer.enable_thinking,
|
||||
"Exploration mode should enable thinking")
|
||||
self.assertTrue(
|
||||
explorer.synthesizer.enable_thinking,
|
||||
"Exploration mode should enable thinking",
|
||||
)
|
||||
print(" ✅ Enables thinking by default")
|
||||
|
||||
|
||||
# Should have session management
|
||||
self.assertIsNone(explorer.current_session,
|
||||
"Should start with no active session")
|
||||
self.assertIsNone(explorer.current_session, "Should start with no active session")
|
||||
print(" ✅ Session management available")
|
||||
|
||||
|
||||
# Should handle session summary gracefully
|
||||
summary = explorer.get_session_summary()
|
||||
self.assertIn("No active", summary)
|
||||
print(" ✅ Graceful session handling")
|
||||
|
||||
|
||||
def test_07_mode_separation(self):
|
||||
"""
|
||||
✅ Test that synthesis and exploration modes don't interfere.
|
||||
|
||||
|
||||
Verifies clean separation:
|
||||
- Different thinking settings
|
||||
- Independent operation
|
||||
- No cross-contamination
|
||||
"""
|
||||
print("\n🔄 Testing mode separation...")
|
||||
|
||||
|
||||
# Create both modes
|
||||
synthesizer = LLMSynthesizer(enable_thinking=False)
|
||||
|
||||
|
||||
try:
|
||||
from mini_rag.explorer import CodeExplorer
|
||||
|
||||
explorer = CodeExplorer(Path("."), self.config)
|
||||
except ImportError:
|
||||
self.skipTest("⏭️ CodeExplorer not available")
|
||||
|
||||
|
||||
# Should have different thinking settings
|
||||
self.assertFalse(synthesizer.enable_thinking,
|
||||
"Synthesis should not use thinking")
|
||||
self.assertTrue(explorer.synthesizer.enable_thinking,
|
||||
"Exploration should use thinking")
|
||||
|
||||
self.assertFalse(synthesizer.enable_thinking, "Synthesis should not use thinking")
|
||||
self.assertTrue(
|
||||
explorer.synthesizer.enable_thinking, "Exploration should use thinking"
|
||||
)
|
||||
|
||||
# Both should be uninitialized (lazy loading)
|
||||
self.assertFalse(synthesizer._initialized,
|
||||
"Should use lazy loading")
|
||||
self.assertFalse(explorer.synthesizer._initialized,
|
||||
"Should use lazy loading")
|
||||
|
||||
self.assertFalse(synthesizer._initialized, "Should use lazy loading")
|
||||
self.assertFalse(explorer.synthesizer._initialized, "Should use lazy loading")
|
||||
|
||||
print(" ✅ Clean mode separation confirmed")
|
||||
|
||||
|
||||
def test_08_with_mocked_ollama(self):
|
||||
"""
|
||||
✅ Test components work with mocked Ollama (for offline testing).
|
||||
|
||||
|
||||
This test verifies that:
|
||||
- System gracefully handles Ollama being unavailable
|
||||
- Fallback behaviors work correctly
|
||||
- Error messages are helpful
|
||||
"""
|
||||
print("\n🎭 Testing with mocked Ollama responses...")
|
||||
|
||||
|
||||
# Mock successful embedding response
|
||||
mock_embedding_response = MagicMock()
|
||||
mock_embedding_response.status_code = 200
|
||||
mock_embedding_response.json.return_value = {
|
||||
'embedding': [0.1] * 768 # Standard embedding size
|
||||
"embedding": [0.1] * 768 # Standard embedding size
|
||||
}
|
||||
|
||||
|
||||
# Mock LLM response
|
||||
mock_llm_response = MagicMock()
|
||||
mock_llm_response.status_code = 200
|
||||
mock_llm_response.json.return_value = {
|
||||
'response': 'authentication login user verification credentials'
|
||||
"response": "authentication login user verification credentials"
|
||||
}
|
||||
|
||||
with patch('requests.post', side_effect=[mock_embedding_response, mock_llm_response]):
|
||||
|
||||
with patch("requests.post", side_effect=[mock_embedding_response, mock_llm_response]):
|
||||
# Test query expansion with mocked response
|
||||
expander = QueryExpander(self.config)
|
||||
expander.enabled = True
|
||||
|
||||
|
||||
expanded = expander._llm_expand_query("authentication")
|
||||
if expanded:
|
||||
print(f" ✅ Mocked expansion: '{expanded}'")
|
||||
self.assertIn("authentication", expanded)
|
||||
else:
|
||||
print(" ⚠️ Expansion returned None (might be expected)")
|
||||
|
||||
|
||||
# Test graceful degradation when Ollama unavailable
|
||||
with patch('requests.get', side_effect=requests.exceptions.ConnectionError()):
|
||||
with patch("requests.get", side_effect=requests.exceptions.ConnectionError()):
|
||||
expander_offline = QueryExpander(self.config)
|
||||
|
||||
|
||||
# Should handle unavailable server gracefully
|
||||
self.assertFalse(expander_offline.is_available())
|
||||
|
||||
|
||||
# Should return original query when offline
|
||||
result = expander_offline.expand_query("test query")
|
||||
self.assertEqual(result, "test query")
|
||||
print(" ✅ Graceful offline behavior working!")
|
||||
|
||||
|
||||
def test_06_configuration_validation(self):
|
||||
"""
|
||||
✅ Check if configuration is valid and complete.
|
||||
|
||||
|
||||
This test verifies that:
|
||||
- All required config sections exist
|
||||
- Values are reasonable
|
||||
- Host/port settings are valid
|
||||
"""
|
||||
print("\n⚙️ Testing configuration validation...")
|
||||
|
||||
|
||||
# Check LLM config
|
||||
self.assertIsNotNone(self.config.llm)
|
||||
self.assertTrue(self.config.llm.ollama_host)
|
||||
self.assertTrue(isinstance(self.config.llm.max_expansion_terms, int))
|
||||
self.assertGreater(self.config.llm.max_expansion_terms, 0)
|
||||
|
||||
print(f" ✅ LLM config valid")
|
||||
|
||||
print(" ✅ LLM config valid")
|
||||
print(f" Host: {self.config.llm.ollama_host}")
|
||||
print(f" Max expansion terms: {self.config.llm.max_expansion_terms}")
|
||||
|
||||
# Check search config
|
||||
|
||||
# Check search config
|
||||
self.assertIsNotNone(self.config.search)
|
||||
self.assertGreater(self.config.search.default_top_k, 0)
|
||||
print(f" ✅ Search config valid")
|
||||
print(" ✅ Search config valid")
|
||||
print(f" Default top-k: {self.config.search.default_top_k}")
|
||||
print(f" Query expansion: {self.config.search.expand_queries}")
|
||||
|
||||
@ -418,10 +412,10 @@ def run_troubleshooting():
|
||||
print("These tests help you troubleshoot your Ollama setup.")
|
||||
print("Each test explains what it's checking and how to fix issues.")
|
||||
print()
|
||||
|
||||
|
||||
# Run tests with detailed output
|
||||
unittest.main(verbosity=2, exit=False)
|
||||
|
||||
|
||||
print("\n" + "=" * 50)
|
||||
print("💡 Common Solutions:")
|
||||
print(" • Install Ollama: https://ollama.ai/download")
|
||||
@ -432,5 +426,5 @@ def run_troubleshooting():
|
||||
print("📚 For more help, see docs/QUERY_EXPANSION.md")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
run_troubleshooting()
|
||||
if __name__ == "__main__":
|
||||
run_troubleshooting()
|
||||
|
||||
@ -10,21 +10,26 @@ Or run directly with venv:
|
||||
source .venv/bin/activate && PYTHONPATH=. python tests/test_rag_integration.py
|
||||
"""
|
||||
|
||||
import tempfile
|
||||
import shutil
|
||||
import os
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
from mini_rag.indexer import ProjectIndexer
|
||||
from mini_rag.search import CodeSearcher
|
||||
|
||||
# Check if virtual environment is activated
|
||||
|
||||
|
||||
def check_venv():
|
||||
if 'VIRTUAL_ENV' not in os.environ:
|
||||
if "VIRTUAL_ENV" not in os.environ:
|
||||
print("⚠️ WARNING: Virtual environment not detected!")
|
||||
print(" This test requires the virtual environment to be activated.")
|
||||
print(" Run: source .venv/bin/activate && PYTHONPATH=. python tests/test_rag_integration.py")
|
||||
print(
|
||||
" Run: source .venv/bin/activate && PYTHONPATH=. python tests/test_rag_integration.py"
|
||||
)
|
||||
print(" Continuing anyway...\n")
|
||||
|
||||
|
||||
check_venv()
|
||||
|
||||
# Sample Python file with proper structure
|
||||
@ -35,15 +40,16 @@ This module demonstrates various Python constructs.
|
||||
|
||||
import os
|
||||
import sys
|
||||
from typing import List, Dict, Optional
|
||||
from typing import List, Optional
|
||||
from dataclasses import dataclass
|
||||
|
||||
# Module-level constants
|
||||
DEFAULT_TIMEOUT = 30
|
||||
MAX_RETRIES = 3
|
||||
|
||||
|
||||
@dataclass
|
||||
|
||||
|
||||
class Config:
|
||||
"""Configuration dataclass."""
|
||||
timeout: int = DEFAULT_TIMEOUT
|
||||
@ -53,73 +59,71 @@ class Config:
|
||||
class DataProcessor:
|
||||
"""
|
||||
Main data processor class.
|
||||
|
||||
|
||||
This class handles the processing of various data types
|
||||
and provides a unified interface for data operations.
|
||||
"""
|
||||
|
||||
|
||||
def __init__(self, config: Config):
|
||||
"""
|
||||
Initialize the processor with configuration.
|
||||
|
||||
|
||||
Args:
|
||||
config: Configuration object
|
||||
"""
|
||||
self.config = config
|
||||
self._cache = {}
|
||||
self._initialized = False
|
||||
|
||||
|
||||
def process(self, data: List[Dict]) -> List[Dict]:
|
||||
"""
|
||||
Process a list of data items.
|
||||
|
||||
|
||||
Args:
|
||||
data: List of dictionaries to process
|
||||
|
||||
|
||||
Returns:
|
||||
Processed data list
|
||||
"""
|
||||
if not self._initialized:
|
||||
self._initialize()
|
||||
|
||||
|
||||
results = []
|
||||
for item in data:
|
||||
processed = self._process_item(item)
|
||||
results.append(processed)
|
||||
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def _initialize(self):
|
||||
"""Initialize internal state."""
|
||||
self._cache.clear()
|
||||
self._initialized = True
|
||||
|
||||
|
||||
def _process_item(self, item: Dict) -> Dict:
|
||||
"""Process a single item."""
|
||||
# Implementation details
|
||||
return {**item, 'processed': True}
|
||||
|
||||
|
||||
def main():
|
||||
"""Main entry point."""
|
||||
config = Config()
|
||||
processor = DataProcessor(config)
|
||||
|
||||
|
||||
test_data = [
|
||||
{'id': 1, 'value': 'test1'},
|
||||
{'id': 2, 'value': 'test2'},
|
||||
]
|
||||
|
||||
|
||||
results = processor.process(test_data)
|
||||
print(f"Processed {len(results)} items")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
'''
|
||||
|
||||
# Sample markdown file
|
||||
sample_markdown = '''# RAG System Documentation
|
||||
sample_markdown = """# RAG System Documentation
|
||||
|
||||
## Overview
|
||||
|
||||
@ -175,103 +179,103 @@ Main class for indexing projects.
|
||||
### CodeSearcher
|
||||
|
||||
Provides semantic search capabilities.
|
||||
'''
|
||||
"""
|
||||
|
||||
|
||||
def test_integration():
|
||||
"""Test the complete RAG system with smart chunking."""
|
||||
|
||||
|
||||
# Create temporary project directory
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
project_path = Path(tmpdir)
|
||||
|
||||
|
||||
# Create test files
|
||||
(project_path / "processor.py").write_text(sample_code)
|
||||
(project_path / "README.md").write_text(sample_markdown)
|
||||
|
||||
|
||||
print("=" * 60)
|
||||
print("TESTING RAG SYSTEM INTEGRATION")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
# Index the project
|
||||
print("\n1. Indexing project...")
|
||||
indexer = ProjectIndexer(project_path)
|
||||
stats = indexer.index_project()
|
||||
|
||||
|
||||
print(f" - Files indexed: {stats['files_indexed']}")
|
||||
print(f" - Total chunks: {stats['chunks_created']}")
|
||||
print(f" - Indexing time: {stats['time_taken']:.2f}s")
|
||||
|
||||
|
||||
# Verify chunks were created properly
|
||||
print("\n2. Verifying chunk metadata...")
|
||||
|
||||
|
||||
# Initialize searcher
|
||||
searcher = CodeSearcher(project_path)
|
||||
|
||||
|
||||
# Search for specific content
|
||||
print("\n3. Testing search functionality...")
|
||||
|
||||
|
||||
# Test 1: Search for class with docstring
|
||||
results = searcher.search("data processor class unified interface", top_k=3)
|
||||
print(f"\n Test 1 - Class search:")
|
||||
print("\n Test 1 - Class search:")
|
||||
for i, result in enumerate(results[:1]):
|
||||
print(f" - Match {i+1}: {result.file_path}")
|
||||
print(f" Chunk type: {result.chunk_type}")
|
||||
print(f" Score: {result.score:.3f}")
|
||||
if 'This class handles' in result.content:
|
||||
if "This class handles" in result.content:
|
||||
print(" [OK] Docstring included with class")
|
||||
else:
|
||||
print(" [FAIL] Docstring not found")
|
||||
|
||||
|
||||
# Test 2: Search for method with docstring
|
||||
results = searcher.search("process list of data items", top_k=3)
|
||||
print(f"\n Test 2 - Method search:")
|
||||
print("\n Test 2 - Method search:")
|
||||
for i, result in enumerate(results[:1]):
|
||||
print(f" - Match {i+1}: {result.file_path}")
|
||||
print(f" Chunk type: {result.chunk_type}")
|
||||
print(f" Parent class: {getattr(result, 'parent_class', 'N/A')}")
|
||||
if 'Args:' in result.content and 'Returns:' in result.content:
|
||||
if "Args:" in result.content and "Returns:" in result.content:
|
||||
print(" [OK] Docstring included with method")
|
||||
else:
|
||||
print(" [FAIL] Method docstring not complete")
|
||||
|
||||
|
||||
# Test 3: Search markdown content
|
||||
results = searcher.search("smart chunking capabilities markdown", top_k=3)
|
||||
print(f"\n Test 3 - Markdown search:")
|
||||
print("\n Test 3 - Markdown search:")
|
||||
for i, result in enumerate(results[:1]):
|
||||
print(f" - Match {i+1}: {result.file_path}")
|
||||
print(f" Chunk type: {result.chunk_type}")
|
||||
print(f" Lines: {result.start_line}-{result.end_line}")
|
||||
|
||||
|
||||
# Test 4: Verify chunk navigation
|
||||
print(f"\n Test 4 - Chunk navigation:")
|
||||
print("\n Test 4 - Chunk navigation:")
|
||||
all_results = searcher.search("", top_k=100) # Get all chunks
|
||||
py_chunks = [r for r in all_results if r.file_path.endswith('.py')]
|
||||
|
||||
py_chunks = [r for r in all_results if r.file_path.endswith(".py")]
|
||||
|
||||
if py_chunks:
|
||||
first_chunk = py_chunks[0]
|
||||
print(f" - First chunk: index={getattr(first_chunk, 'chunk_index', 'N/A')}")
|
||||
print(f" Next chunk ID: {getattr(first_chunk, 'next_chunk_id', 'N/A')}")
|
||||
|
||||
|
||||
# Verify chain
|
||||
valid_chain = True
|
||||
for i in range(len(py_chunks) - 1):
|
||||
curr = py_chunks[i]
|
||||
next_chunk = py_chunks[i + 1]
|
||||
# py_chunks[i + 1] # Unused variable removed
|
||||
expected_next = f"processor_{i+1}"
|
||||
if getattr(curr, 'next_chunk_id', None) != expected_next:
|
||||
if getattr(curr, "next_chunk_id", None) != expected_next:
|
||||
valid_chain = False
|
||||
break
|
||||
|
||||
|
||||
if valid_chain:
|
||||
print(" [OK] Chunk navigation chain is valid")
|
||||
else:
|
||||
print(" [FAIL] Chunk navigation chain broken")
|
||||
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print("INTEGRATION TEST COMPLETED")
|
||||
print("=" * 60)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_integration()
|
||||
test_integration()
|
||||
|
||||
@ -8,26 +8,26 @@ and producing better quality results.
|
||||
Run with: python3 tests/test_smart_ranking.py
|
||||
"""
|
||||
|
||||
import unittest
|
||||
import sys
|
||||
from pathlib import Path
|
||||
import unittest
|
||||
from datetime import datetime, timedelta
|
||||
from unittest.mock import patch, MagicMock
|
||||
from pathlib import Path
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
from mini_rag.search import CodeSearcher, SearchResult
|
||||
|
||||
# Add project to path
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||
|
||||
from mini_rag.search import SearchResult, CodeSearcher
|
||||
|
||||
|
||||
class TestSmartRanking(unittest.TestCase):
|
||||
"""
|
||||
Test smart result re-ranking for better search quality.
|
||||
|
||||
|
||||
These tests verify that important files, recent files, and
|
||||
well-structured content get appropriate boosts.
|
||||
"""
|
||||
|
||||
|
||||
def setUp(self):
|
||||
"""Set up test results for ranking."""
|
||||
# Create mock search results with different characteristics
|
||||
@ -40,27 +40,31 @@ class TestSmartRanking(unittest.TestCase):
|
||||
end_line=2,
|
||||
chunk_type="text",
|
||||
name="temp",
|
||||
language="text"
|
||||
language="text",
|
||||
),
|
||||
SearchResult(
|
||||
file_path=Path("README.md"),
|
||||
content="This is a comprehensive README file\nwith detailed installation instructions\nand usage examples for beginners.",
|
||||
file_path=Path("README.md"),
|
||||
content=(
|
||||
"This is a comprehensive README file\n"
|
||||
"with detailed installation instructions\n"
|
||||
"and usage examples for beginners."
|
||||
),
|
||||
score=0.7, # Lower initial score
|
||||
start_line=1,
|
||||
end_line=5,
|
||||
chunk_type="markdown",
|
||||
name="Installation Guide",
|
||||
language="markdown"
|
||||
language="markdown",
|
||||
),
|
||||
SearchResult(
|
||||
file_path=Path("src/main.py"),
|
||||
content="def main():\n \"\"\"Main application entry point.\"\"\"\n app = create_app()\n return app.run()",
|
||||
content='def main():\n """Main application entry point."""\n app = create_app()\n return app.run()',
|
||||
score=0.75,
|
||||
start_line=10,
|
||||
end_line=15,
|
||||
chunk_type="function",
|
||||
name="main",
|
||||
language="python"
|
||||
language="python",
|
||||
),
|
||||
SearchResult(
|
||||
file_path=Path("temp/cache_123.log"),
|
||||
@ -68,123 +72,123 @@ class TestSmartRanking(unittest.TestCase):
|
||||
score=0.85,
|
||||
start_line=1,
|
||||
end_line=1,
|
||||
chunk_type="text",
|
||||
chunk_type="text",
|
||||
name="log",
|
||||
language="text"
|
||||
)
|
||||
language="text",
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def test_01_important_file_boost(self):
|
||||
"""
|
||||
✅ Test that important files get ranking boosts.
|
||||
|
||||
|
||||
README files, main files, config files, etc. should be
|
||||
ranked higher than random temporary files.
|
||||
"""
|
||||
print("\n📈 Testing important file boost...")
|
||||
|
||||
|
||||
# Create a minimal CodeSearcher to test ranking
|
||||
searcher = MagicMock()
|
||||
searcher._smart_rerank = CodeSearcher._smart_rerank.__get__(searcher)
|
||||
|
||||
|
||||
# Test re-ranking
|
||||
ranked = searcher._smart_rerank(self.mock_results.copy())
|
||||
|
||||
|
||||
# Find README and temp file results
|
||||
readme_result = next((r for r in ranked if 'README' in str(r.file_path)), None)
|
||||
temp_result = next((r for r in ranked if 'temp' in str(r.file_path)), None)
|
||||
|
||||
readme_result = next((r for r in ranked if "README" in str(r.file_path)), None)
|
||||
temp_result = next((r for r in ranked if "temp" in str(r.file_path)), None)
|
||||
|
||||
self.assertIsNotNone(readme_result)
|
||||
self.assertIsNotNone(temp_result)
|
||||
|
||||
|
||||
# README should be boosted (original 0.7 * 1.2 = 0.84)
|
||||
self.assertGreater(readme_result.score, 0.8)
|
||||
|
||||
|
||||
# README should now rank higher than the temp file
|
||||
readme_index = ranked.index(readme_result)
|
||||
temp_index = ranked.index(temp_result)
|
||||
self.assertLess(readme_index, temp_index)
|
||||
|
||||
|
||||
print(f" ✅ README boosted from 0.7 to {readme_result.score:.3f}")
|
||||
print(f" 📊 README now ranks #{readme_index + 1}, temp file ranks #{temp_index + 1}")
|
||||
|
||||
|
||||
def test_02_content_quality_boost(self):
|
||||
"""
|
||||
✅ Test that well-structured content gets boosts.
|
||||
|
||||
|
||||
Content with multiple lines and good structure should
|
||||
rank higher than very short snippets.
|
||||
"""
|
||||
print("\n📝 Testing content quality boost...")
|
||||
|
||||
|
||||
searcher = MagicMock()
|
||||
searcher._smart_rerank = CodeSearcher._smart_rerank.__get__(searcher)
|
||||
|
||||
|
||||
ranked = searcher._smart_rerank(self.mock_results.copy())
|
||||
|
||||
|
||||
# Find short and long content results
|
||||
short_result = next((r for r in ranked if len(r.content.strip()) < 20), None)
|
||||
structured_result = next((r for r in ranked if 'README' in str(r.file_path)), None)
|
||||
|
||||
structured_result = next((r for r in ranked if "README" in str(r.file_path)), None)
|
||||
|
||||
if short_result:
|
||||
# Short content should be penalized (score * 0.9)
|
||||
print(f" 📉 Short content penalized: {short_result.score:.3f}")
|
||||
# Original was likely reduced
|
||||
|
||||
|
||||
if structured_result:
|
||||
# Well-structured content gets small boost (score * 1.02)
|
||||
lines = structured_result.content.strip().split('\n')
|
||||
lines = structured_result.content.strip().split("\n")
|
||||
if len(lines) >= 3:
|
||||
print(f" 📈 Structured content boosted: {structured_result.score:.3f}")
|
||||
print(f" ({len(lines)} lines of content)")
|
||||
|
||||
|
||||
self.assertTrue(True) # Test passes if no exceptions
|
||||
|
||||
|
||||
def test_03_chunk_type_relevance(self):
|
||||
"""
|
||||
✅ Test that relevant chunk types get appropriate boosts.
|
||||
|
||||
|
||||
Functions, classes, and documentation should be ranked
|
||||
higher than random text snippets.
|
||||
"""
|
||||
print("\n🏷️ Testing chunk type relevance...")
|
||||
|
||||
|
||||
searcher = MagicMock()
|
||||
searcher._smart_rerank = CodeSearcher._smart_rerank.__get__(searcher)
|
||||
|
||||
|
||||
ranked = searcher._smart_rerank(self.mock_results.copy())
|
||||
|
||||
|
||||
# Find function result
|
||||
function_result = next((r for r in ranked if r.chunk_type == 'function'), None)
|
||||
|
||||
function_result = next((r for r in ranked if r.chunk_type == "function"), None)
|
||||
|
||||
if function_result:
|
||||
# Function should get boost (original score * 1.1)
|
||||
print(f" ✅ Function chunk boosted: {function_result.score:.3f}")
|
||||
print(f" Function: {function_result.name}")
|
||||
|
||||
|
||||
# Should rank well compared to original score
|
||||
original_score = 0.75
|
||||
self.assertGreater(function_result.score, original_score)
|
||||
|
||||
|
||||
self.assertTrue(True)
|
||||
|
||||
@patch('pathlib.Path.stat')
|
||||
|
||||
@patch("pathlib.Path.stat")
|
||||
def test_04_recency_boost(self, mock_stat):
|
||||
"""
|
||||
✅ Test that recently modified files get ranking boosts.
|
||||
|
||||
|
||||
Files modified in the last week should rank higher than
|
||||
very old files.
|
||||
"""
|
||||
print("\n⏰ Testing recency boost...")
|
||||
|
||||
|
||||
# Mock file stats for different modification times
|
||||
now = datetime.now()
|
||||
|
||||
|
||||
def mock_stat_side_effect(file_path):
|
||||
mock_stat_obj = MagicMock()
|
||||
|
||||
if 'README' in str(file_path):
|
||||
|
||||
if "README" in str(file_path):
|
||||
# Recent file (2 days ago)
|
||||
recent_time = (now - timedelta(days=2)).timestamp()
|
||||
mock_stat_obj.st_mtime = recent_time
|
||||
@ -192,98 +196,102 @@ class TestSmartRanking(unittest.TestCase):
|
||||
# Old file (2 months ago)
|
||||
old_time = (now - timedelta(days=60)).timestamp()
|
||||
mock_stat_obj.st_mtime = old_time
|
||||
|
||||
|
||||
return mock_stat_obj
|
||||
|
||||
|
||||
# Apply mock to Path.stat for each result
|
||||
mock_stat.side_effect = lambda: mock_stat_side_effect("dummy")
|
||||
|
||||
|
||||
# Patch the Path constructor to return mocked paths
|
||||
with patch.object(Path, 'stat', side_effect=mock_stat_side_effect):
|
||||
with patch.object(Path, "stat", side_effect=mock_stat_side_effect):
|
||||
searcher = MagicMock()
|
||||
searcher._smart_rerank = CodeSearcher._smart_rerank.__get__(searcher)
|
||||
|
||||
|
||||
ranked = searcher._smart_rerank(self.mock_results.copy())
|
||||
|
||||
readme_result = next((r for r in ranked if 'README' in str(r.file_path)), None)
|
||||
|
||||
|
||||
readme_result = next((r for r in ranked if "README" in str(r.file_path)), None)
|
||||
|
||||
if readme_result:
|
||||
# Recent file should get boost
|
||||
# Original 0.7 * 1.2 (important) * 1.1 (recent) * 1.02 (structured) ≈ 0.88
|
||||
print(f" ✅ Recent file boosted: {readme_result.score:.3f}")
|
||||
self.assertGreater(readme_result.score, 0.8)
|
||||
|
||||
|
||||
print(" 📅 Recency boost system working!")
|
||||
|
||||
|
||||
def test_05_overall_ranking_quality(self):
|
||||
"""
|
||||
✅ Test that overall ranking produces sensible results.
|
||||
|
||||
|
||||
After all boosts and penalties, the ranking should make sense:
|
||||
- Important, recent, well-structured files should rank highest
|
||||
- Short, temporary, old files should rank lowest
|
||||
"""
|
||||
print("\n🏆 Testing overall ranking quality...")
|
||||
|
||||
|
||||
searcher = MagicMock()
|
||||
searcher._smart_rerank = CodeSearcher._smart_rerank.__get__(searcher)
|
||||
|
||||
|
||||
# Test with original unsorted results
|
||||
unsorted = self.mock_results.copy()
|
||||
ranked = searcher._smart_rerank(unsorted)
|
||||
|
||||
|
||||
print(" 📊 Final ranking:")
|
||||
for i, result in enumerate(ranked, 1):
|
||||
file_name = Path(result.file_path).name
|
||||
print(f" {i}. {file_name} (score: {result.score:.3f})")
|
||||
|
||||
|
||||
# Quality checks:
|
||||
# 1. Results should be sorted by score (descending)
|
||||
scores = [r.score for r in ranked]
|
||||
self.assertEqual(scores, sorted(scores, reverse=True))
|
||||
|
||||
|
||||
# 2. README should rank higher than temp files
|
||||
readme_pos = next((i for i, r in enumerate(ranked) if 'README' in str(r.file_path)), None)
|
||||
temp_pos = next((i for i, r in enumerate(ranked) if 'temp' in str(r.file_path)), None)
|
||||
|
||||
readme_pos = next(
|
||||
(i for i, r in enumerate(ranked) if "README" in str(r.file_path)), None
|
||||
)
|
||||
temp_pos = next((i for i, r in enumerate(ranked) if "temp" in str(r.file_path)), None)
|
||||
|
||||
if readme_pos is not None and temp_pos is not None:
|
||||
self.assertLess(readme_pos, temp_pos)
|
||||
print(f" ✅ README ranks #{readme_pos + 1}, temp file ranks #{temp_pos + 1}")
|
||||
|
||||
|
||||
# 3. Function/code should rank well
|
||||
function_pos = next((i for i, r in enumerate(ranked) if r.chunk_type == 'function'), None)
|
||||
function_pos = next(
|
||||
(i for i, r in enumerate(ranked) if r.chunk_type == "function"), None
|
||||
)
|
||||
if function_pos is not None:
|
||||
self.assertLess(function_pos, len(ranked) // 2) # Should be in top half
|
||||
print(f" ✅ Function code ranks #{function_pos + 1}")
|
||||
|
||||
|
||||
print(" 🎯 Ranking quality looks good!")
|
||||
|
||||
|
||||
def test_06_zero_overhead_verification(self):
|
||||
"""
|
||||
✅ Verify that smart ranking adds zero overhead.
|
||||
|
||||
|
||||
The ranking should only use existing data and lightweight operations.
|
||||
No additional API calls or expensive operations.
|
||||
"""
|
||||
print("\n⚡ Testing zero overhead...")
|
||||
|
||||
|
||||
searcher = MagicMock()
|
||||
searcher._smart_rerank = CodeSearcher._smart_rerank.__get__(searcher)
|
||||
|
||||
|
||||
import time
|
||||
|
||||
|
||||
# Time the ranking operation
|
||||
start_time = time.time()
|
||||
ranked = searcher._smart_rerank(self.mock_results.copy())
|
||||
# searcher._smart_rerank(self.mock_results.copy()) # Unused variable removed
|
||||
end_time = time.time()
|
||||
|
||||
|
||||
ranking_time = (end_time - start_time) * 1000 # Convert to milliseconds
|
||||
|
||||
|
||||
print(f" ⏱️ Ranking took {ranking_time:.2f}ms for {len(self.mock_results)} results")
|
||||
|
||||
|
||||
# Should be very fast (< 10ms for small result sets)
|
||||
self.assertLess(ranking_time, 50) # Very generous upper bound
|
||||
|
||||
|
||||
# Verify no external calls were made (check that we only use existing data)
|
||||
# This is implicitly tested by the fact that we're using mock objects
|
||||
print(" ✅ Zero overhead verified - only uses existing result data!")
|
||||
@ -297,18 +305,18 @@ def run_ranking_tests():
|
||||
print("=" * 40)
|
||||
print("Testing the zero-overhead ranking improvements.")
|
||||
print()
|
||||
|
||||
|
||||
unittest.main(verbosity=2, exit=False)
|
||||
|
||||
|
||||
print("\n" + "=" * 40)
|
||||
print("💡 Smart Ranking Features:")
|
||||
print(" • Important files (README, main, config) get 20% boost")
|
||||
print(" • Recent files (< 1 week) get 10% boost")
|
||||
print(" • Recent files (< 1 week) get 10% boost")
|
||||
print(" • Functions/classes get 10% boost")
|
||||
print(" • Well-structured content gets 2% boost")
|
||||
print(" • Very short content gets 10% penalty")
|
||||
print(" • All boosts are cumulative for maximum quality")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
run_ranking_tests()
|
||||
if __name__ == "__main__":
|
||||
run_ranking_tests()
|
||||
|
||||
@ -8,21 +8,22 @@ and helps identify what's working and what needs attention.
|
||||
Run with: python3 tests/troubleshoot.py
|
||||
"""
|
||||
|
||||
import sys
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
# Add project to path
|
||||
sys.path.insert(0, str(Path(__file__).parent.parent))
|
||||
|
||||
|
||||
def main():
|
||||
"""Run comprehensive troubleshooting checks."""
|
||||
|
||||
|
||||
print("🔧 FSS-Mini-RAG Troubleshooting Tool")
|
||||
print("=" * 50)
|
||||
print("This tool checks your setup and helps fix common issues.")
|
||||
print()
|
||||
|
||||
|
||||
# Menu of available tests
|
||||
print("Available tests:")
|
||||
print(" 1. Full Ollama Integration Test")
|
||||
@ -30,21 +31,21 @@ def main():
|
||||
print(" 3. Basic System Validation")
|
||||
print(" 4. All Tests (recommended)")
|
||||
print()
|
||||
|
||||
|
||||
choice = input("Select test (1-4, or Enter for all): ").strip()
|
||||
|
||||
|
||||
if choice == "1" or choice == "" or choice == "4":
|
||||
print("\n" + "🤖 OLLAMA INTEGRATION TESTS".center(50, "="))
|
||||
run_test("test_ollama_integration.py")
|
||||
|
||||
|
||||
if choice == "2" or choice == "" or choice == "4":
|
||||
print("\n" + "🧮 SMART RANKING TESTS".center(50, "="))
|
||||
run_test("test_smart_ranking.py")
|
||||
|
||||
|
||||
if choice == "3" or choice == "" or choice == "4":
|
||||
print("\n" + "🔍 SYSTEM VALIDATION TESTS".center(50, "="))
|
||||
run_test("03_system_validation.py")
|
||||
|
||||
|
||||
print("\n" + "✅ TROUBLESHOOTING COMPLETE".center(50, "="))
|
||||
print("💡 If you're still having issues:")
|
||||
print(" • Check docs/QUERY_EXPANSION.md for setup help")
|
||||
@ -52,35 +53,37 @@ def main():
|
||||
print(" • Start Ollama server: ollama serve")
|
||||
print(" • Install models: ollama pull qwen3:4b")
|
||||
|
||||
|
||||
def run_test(test_file):
|
||||
"""Run a specific test file."""
|
||||
test_path = Path(__file__).parent / test_file
|
||||
|
||||
|
||||
if not test_path.exists():
|
||||
print(f"❌ Test file not found: {test_file}")
|
||||
return
|
||||
|
||||
|
||||
try:
|
||||
# Run the test
|
||||
result = subprocess.run([
|
||||
sys.executable, str(test_path)
|
||||
], capture_output=True, text=True, timeout=60)
|
||||
|
||||
result = subprocess.run(
|
||||
[sys.executable, str(test_path)], capture_output=True, text=True, timeout=60
|
||||
)
|
||||
|
||||
# Show output
|
||||
if result.stdout:
|
||||
print(result.stdout)
|
||||
if result.stderr:
|
||||
print("STDERR:", result.stderr)
|
||||
|
||||
|
||||
if result.returncode == 0:
|
||||
print(f"✅ {test_file} completed successfully!")
|
||||
else:
|
||||
print(f"⚠️ {test_file} had some issues (return code: {result.returncode})")
|
||||
|
||||
|
||||
except subprocess.TimeoutExpired:
|
||||
print(f"⏰ {test_file} timed out after 60 seconds")
|
||||
except Exception as e:
|
||||
print(f"❌ Error running {test_file}: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user