email-sorter/scripts/run_clean_10k.sh
FSSCoding 53174a34eb Organize project structure and add MVP features
Project Reorganization:
- Created docs/ directory and moved all documentation
- Created scripts/ directory for shell scripts
- Created scripts/experimental/ for research scripts
- Updated .gitignore for new structure
- Updated README.md with MVP status and new structure

New Features:
- Category verification system (verify_model_categories)
- --verify-categories flag for mailbox compatibility check
- --no-llm-fallback flag for pure ML classification
- Trained model saved in src/models/calibrated/

Threshold Optimization:
- Reduced default threshold from 0.75 to 0.55
- Updated all category thresholds to 0.55
- Reduces LLM fallback rate by 40% (35% -> 21%)

Documentation:
- SYSTEM_FLOW.html - Complete system architecture
- VERIFY_CATEGORIES_FEATURE.html - Feature documentation
- LABEL_TRAINING_PHASE_DETAIL.html - Calibration breakdown
- FAST_ML_ONLY_WORKFLOW.html - Pure ML guide
- PROJECT_STATUS_AND_NEXT_STEPS.html - Roadmap
- ROOT_CAUSE_ANALYSIS.md - Bug fixes

MVP Status:
- 10k emails in 4 minutes, 72.7% accuracy, 0 LLM calls
- LLM-driven category discovery working
- Embedding-based transfer learning confirmed
- All model paths verified and working
2025-10-25 14:46:58 +11:00

51 lines
1.3 KiB
Bash
Executable File

#!/usr/bin/env bash
# Clean 10k test with all fixes applied
# Run this when ready: ./run_clean_10k.sh
set -e
echo "=========================================="
echo "CLEAN 10K TEST - Fixed Category System"
echo "=========================================="
echo ""
echo "Fixes applied:"
echo " ✓ Removed hardcoded category pollution"
echo " ✓ LLM-only category discovery"
echo " ✓ Intelligent scaling (3% cal, 1% val)"
echo ""
echo "Expected results:"
echo " - ~11 clean categories (not 29)"
echo " - No duplicates (Work vs work)"
echo " - Realistic confidence scores"
echo ""
echo "Starting at: $(date)"
echo ""
# Activate venv
if [ -z "$VIRTUAL_ENV" ]; then
source venv/bin/activate
fi
# Clean start
rm -rf results_10k/
rm -f src/models/calibrated/classifier.pkl
rm -f src/models/category_cache.json
# Run with progress visible
python -m src.cli run \
--source enron \
--limit 10000 \
--output results_10k/ \
--verbose
echo ""
echo "=========================================="
echo "COMPLETE at: $(date)"
echo "=========================================="
echo ""
echo "Check results:"
echo " - Categories: cat src/models/category_cache.json | python3 -m json.tool"
echo " - Model: ls -lh src/models/calibrated/"
echo " - Results: ls -lh results_10k/"
echo ""