email-sorter/docs/PROJECT_STATUS_AND_NEXT_STEPS.html
FSSCoding 53174a34eb Organize project structure and add MVP features
Project Reorganization:
- Created docs/ directory and moved all documentation
- Created scripts/ directory for shell scripts
- Created scripts/experimental/ for research scripts
- Updated .gitignore for new structure
- Updated README.md with MVP status and new structure

New Features:
- Category verification system (verify_model_categories)
- --verify-categories flag for mailbox compatibility check
- --no-llm-fallback flag for pure ML classification
- Trained model saved in src/models/calibrated/

Threshold Optimization:
- Reduced default threshold from 0.75 to 0.55
- Updated all category thresholds to 0.55
- Reduces LLM fallback rate by 40% (35% -> 21%)

Documentation:
- SYSTEM_FLOW.html - Complete system architecture
- VERIFY_CATEGORIES_FEATURE.html - Feature documentation
- LABEL_TRAINING_PHASE_DETAIL.html - Calibration breakdown
- FAST_ML_ONLY_WORKFLOW.html - Pure ML guide
- PROJECT_STATUS_AND_NEXT_STEPS.html - Roadmap
- ROOT_CAUSE_ANALYSIS.md - Bug fixes

MVP Status:
- 10k emails in 4 minutes, 72.7% accuracy, 0 LLM calls
- LLM-driven category discovery working
- Embedding-based transfer learning confirmed
- All model paths verified and working
2025-10-25 14:46:58 +11:00

649 lines
21 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Email Sorter - Project Status & Next Steps</title>
<script src="https://cdn.jsdelivr.net/npm/mermaid@10/dist/mermaid.min.js"></script>
<style>
body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
margin: 20px;
background: #1e1e1e;
color: #d4d4d4;
}
h1, h2, h3 {
color: #4ec9b0;
}
.diagram {
background: white;
padding: 20px;
margin: 20px 0;
border-radius: 8px;
}
.success {
background: #002a00;
border-left: 4px solid #4ec9b0;
padding: 15px;
margin: 10px 0;
}
.section {
background: #252526;
padding: 15px;
margin: 10px 0;
border-left: 4px solid #569cd6;
}
table {
width: 100%;
border-collapse: collapse;
margin: 20px 0;
background: #252526;
}
th {
background: #37373d;
padding: 12px;
text-align: left;
color: #4ec9b0;
}
td {
padding: 10px;
border-bottom: 1px solid #3e3e42;
}
code {
background: #1e1e1e;
padding: 2px 6px;
border-radius: 3px;
color: #ce9178;
}
.mvp-proven {
background: #003a00;
border: 3px solid #4ec9b0;
padding: 20px;
margin: 20px 0;
border-radius: 8px;
text-align: center;
}
.mvp-proven h2 {
font-size: 2em;
margin: 0;
}
</style>
</head>
<body>
<div class="mvp-proven">
<h2>🎉 MVP PROVEN AND WORKING 🎉</h2>
<p style="font-size: 1.2em; margin: 10px 0;">
<strong>10,000 emails classified in 4 minutes</strong><br/>
72.7% accuracy | 0 LLM calls | Pure ML speed
</p>
</div>
<h1>Email Sorter - Project Status & Next Steps</h1>
<h2>✅ What We've Achieved (MVP Complete)</h2>
<div class="success">
<h3>Core System Working</h3>
<ul>
<li><strong>LLM-Driven Calibration:</strong> Discovers categories from email samples (11 categories found)</li>
<li><strong>ML Model Training:</strong> LightGBM trained on 10k emails (1.8MB model)</li>
<li><strong>Fast Classification:</strong> 10k emails in ~4 minutes with --no-llm-fallback</li>
<li><strong>Category Verification:</strong> Single LLM call validates model fit for new mailboxes</li>
<li><strong>Embedding-Based Features:</strong> Universal 384-dim embeddings transfer across mailboxes</li>
<li><strong>Threshold Optimization:</strong> 0.55 threshold reduces LLM fallback by 40%</li>
</ul>
</div>
<h2>📊 Test Results Summary</h2>
<table>
<tr>
<th>Metric</th>
<th>Result</th>
<th>Status</th>
</tr>
<tr>
<td>Total emails processed</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>Processing time</td>
<td>~4 minutes</td>
<td></td>
</tr>
<tr>
<td>ML classification rate</td>
<td>78.4%</td>
<td></td>
</tr>
<tr>
<td>LLM calls (with --no-llm-fallback)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Accuracy estimate</td>
<td>72.7%</td>
<td>✅ (acceptable for speed)</td>
</tr>
<tr>
<td>Categories discovered</td>
<td>11 (Work, Financial, Updates, etc.)</td>
<td></td>
</tr>
<tr>
<td>Model size</td>
<td>1.8MB</td>
<td>✅ (portable)</td>
</tr>
</table>
<h2>🗂️ Project Organization</h2>
<h3>Core Modules</h3>
<table>
<tr>
<th>Module</th>
<th>Purpose</th>
<th>Status</th>
</tr>
<tr>
<td><code>src/cli.py</code></td>
<td>Main CLI with all flags (--verify-categories, --no-llm-fallback)</td>
<td>✅ Complete</td>
</tr>
<tr>
<td><code>src/calibration/workflow.py</code></td>
<td>LLM-driven category discovery + training</td>
<td>✅ Complete</td>
</tr>
<tr>
<td><code>src/calibration/llm_analyzer.py</code></td>
<td>Batch LLM analysis (20 emails/call)</td>
<td>✅ Complete</td>
</tr>
<tr>
<td><code>src/calibration/category_verifier.py</code></td>
<td>Single LLM call to verify categories</td>
<td>✅ New feature</td>
</tr>
<tr>
<td><code>src/classification/ml_classifier.py</code></td>
<td>LightGBM model wrapper</td>
<td>✅ Complete</td>
</tr>
<tr>
<td><code>src/classification/adaptive_classifier.py</code></td>
<td>Rule → ML → LLM orchestrator</td>
<td>✅ Complete</td>
</tr>
<tr>
<td><code>src/classification/feature_extractor.py</code></td>
<td>Embeddings (384-dim) + TF-IDF</td>
<td>✅ Complete</td>
</tr>
</table>
<h3>Models & Data</h3>
<table>
<tr>
<th>Asset</th>
<th>Location</th>
<th>Status</th>
</tr>
<tr>
<td>Trained model</td>
<td><code>src/models/calibrated/classifier.pkl</code></td>
<td>✅ 1.8MB, 11 categories</td>
</tr>
<tr>
<td>Pretrained copy</td>
<td><code>src/models/pretrained/classifier.pkl</code></td>
<td>✅ Ready for fast load</td>
</tr>
<tr>
<td>Category cache</td>
<td><code>src/models/category_cache.json</code></td>
<td>✅ 10 cached categories</td>
</tr>
<tr>
<td>Test results</td>
<td><code>test/results.json</code></td>
<td>✅ 10k classifications</td>
</tr>
</table>
<h3>Documentation</h3>
<table>
<tr>
<th>Document</th>
<th>Purpose</th>
</tr>
<tr>
<td><code>SYSTEM_FLOW.html</code></td>
<td>Complete system flow diagrams with timing</td>
</tr>
<tr>
<td><code>LABEL_TRAINING_PHASE_DETAIL.html</code></td>
<td>Deep dive into calibration phase</td>
</tr>
<tr>
<td><code>FAST_ML_ONLY_WORKFLOW.html</code></td>
<td>Pure ML workflow analysis</td>
</tr>
<tr>
<td><code>VERIFY_CATEGORIES_FEATURE.html</code></td>
<td>Category verification documentation</td>
</tr>
<tr>
<td><code>PROJECT_STATUS_AND_NEXT_STEPS.html</code></td>
<td>This document - status and roadmap</td>
</tr>
</table>
<h2>🎯 Next Steps (Priority Order)</h2>
<h3>Phase 1: Clean Up & Organize (Next Session)</h3>
<div class="section">
<h4>1.1 Clean Root Directory</h4>
<p><strong>Goal:</strong> Move test artifacts and scripts to organized locations</p>
<ul>
<li>Create <code>docs/</code> folder - move all .html files there</li>
<li>Create <code>scripts/</code> folder - move all .sh files there</li>
<li>Create <code>logs/</code> folder - move all .log files there</li>
<li>Delete debug files (debug_*.txt, spot_check_results.txt)</li>
<li>Create .gitignore for logs/, results/, test/, ml_only_test/, etc.</li>
</ul>
<p><strong>Time:</strong> 10 minutes</p>
</div>
<div class="section">
<h4>1.2 Create README.md</h4>
<p><strong>Goal:</strong> Professional project documentation</p>
<ul>
<li>Overview of system architecture</li>
<li>Quick start guide</li>
<li>Usage examples (with/without calibration, with/without verification)</li>
<li>Performance benchmarks (from our tests)</li>
<li>Configuration options</li>
</ul>
<p><strong>Time:</strong> 30 minutes</p>
</div>
<div class="section">
<h4>1.3 Add Tests</h4>
<p><strong>Goal:</strong> Ensure code quality and catch regressions</p>
<ul>
<li>Unit tests for feature extraction</li>
<li>Unit tests for category verification</li>
<li>Integration test for full pipeline</li>
<li>Test for --no-llm-fallback flag</li>
<li>Test for --verify-categories flag</li>
</ul>
<p><strong>Time:</strong> 2 hours</p>
</div>
<h3>Phase 2: Real-World Integration (Week 1-2)</h3>
<div class="section">
<h4>2.1 Gmail Provider Implementation</h4>
<p><strong>Goal:</strong> Connect to real Gmail accounts</p>
<ul>
<li>Implement Gmail API authentication (OAuth2)</li>
<li>Fetch emails with pagination</li>
<li>Handle Gmail-specific metadata (labels, threads)</li>
<li>Test with personal Gmail account</li>
</ul>
<p><strong>Time:</strong> 4-6 hours</p>
</div>
<div class="section">
<h4>2.2 IMAP Provider Implementation</h4>
<p><strong>Goal:</strong> Support any email provider (Outlook, custom servers)</p>
<ul>
<li>IMAP connection handling</li>
<li>SSL/TLS support</li>
<li>Folder navigation</li>
<li>Test with Outlook/Protonmail</li>
</ul>
<p><strong>Time:</strong> 3-4 hours</p>
</div>
<div class="section">
<h4>2.3 Email Syncing (Apply Classifications)</h4>
<p><strong>Goal:</strong> Move/label emails based on classification</p>
<ul>
<li>Gmail: Apply labels to emails</li>
<li>IMAP: Move emails to folders</li>
<li>Dry-run mode (preview without applying)</li>
<li>Batch operations for speed</li>
<li>Rollback capability</li>
</ul>
<p><strong>Time:</strong> 6-8 hours</p>
</div>
<h3>Phase 3: Production Features (Week 3-4)</h3>
<div class="section">
<h4>3.1 Incremental Classification</h4>
<p><strong>Goal:</strong> Only classify new emails, not entire inbox</p>
<ul>
<li>Track last processed email ID</li>
<li>Resume from checkpoint</li>
<li>Database/file-based state tracking</li>
<li>Scheduled runs (cron integration)</li>
</ul>
<p><strong>Time:</strong> 4-6 hours</p>
</div>
<div class="section">
<h4>3.2 Multi-Account Support</h4>
<p><strong>Goal:</strong> Manage multiple email accounts</p>
<ul>
<li>Per-account configuration</li>
<li>Per-account trained models</li>
<li>Account switching CLI</li>
<li>Shared category cache across accounts</li>
</ul>
<p><strong>Time:</strong> 3-4 hours</p>
</div>
<div class="section">
<h4>3.3 Model Management</h4>
<p><strong>Goal:</strong> Handle model lifecycle</p>
<ul>
<li>Model versioning (timestamps)</li>
<li>Model comparison (A/B testing)</li>
<li>Model export/import</li>
<li>Retraining scheduler</li>
<li>Model degradation detection</li>
</ul>
<p><strong>Time:</strong> 4-5 hours</p>
</div>
<h3>Phase 4: Advanced Features (Month 2)</h3>
<div class="section">
<h4>4.1 Web Dashboard</h4>
<p><strong>Goal:</strong> Visual interface for monitoring and management</p>
<ul>
<li>Flask/FastAPI backend</li>
<li>React/Vue frontend</li>
<li>View classification results</li>
<li>Manually correct classifications (feedback loop)</li>
<li>Monitor accuracy over time</li>
<li>Trigger recalibration</li>
</ul>
<p><strong>Time:</strong> 20-30 hours</p>
</div>
<div class="section">
<h4>4.2 Active Learning</h4>
<p><strong>Goal:</strong> Improve model from user corrections</p>
<ul>
<li>User feedback collection</li>
<li>Disagreement-based sampling (low confidence + user correction)</li>
<li>Incremental model updates</li>
<li>Feedback-driven category evolution</li>
</ul>
<p><strong>Time:</strong> 8-10 hours</p>
</div>
<div class="section">
<h4>4.3 Performance Optimization</h4>
<p><strong>Goal:</strong> Scale to 100k+ emails</p>
<ul>
<li>Batch embedding generation (reduce API calls)</li>
<li>Async/parallel classification</li>
<li>Model quantization (reduce size)</li>
<li>GPU acceleration for embeddings</li>
<li>Caching layer (Redis)</li>
</ul>
<p><strong>Time:</strong> 10-15 hours</p>
</div>
<h2>🔧 Immediate Action Items (This Week)</h2>
<table>
<tr>
<th>Task</th>
<th>Priority</th>
<th>Time</th>
<th>Status</th>
</tr>
<tr>
<td>Clean root directory - organize files</td>
<td>High</td>
<td>10 min</td>
<td>Pending</td>
</tr>
<tr>
<td>Create comprehensive README.md</td>
<td>High</td>
<td>30 min</td>
<td>Pending</td>
</tr>
<tr>
<td>Add .gitignore for test artifacts</td>
<td>High</td>
<td>5 min</td>
<td>Pending</td>
</tr>
<tr>
<td>Create setup.py for pip installation</td>
<td>Medium</td>
<td>20 min</td>
<td>Pending</td>
</tr>
<tr>
<td>Write basic unit tests</td>
<td>Medium</td>
<td>2 hours</td>
<td>Pending</td>
</tr>
<tr>
<td>Test Gmail provider (basic fetch)</td>
<td>Medium</td>
<td>2 hours</td>
<td>Pending</td>
</tr>
</table>
<h2>📈 Success Metrics</h2>
<div class="diagram">
<pre class="mermaid">
flowchart LR
MVP[MVP Proven] --> P1[Phase 1: Organization]
P1 --> P2[Phase 2: Integration]
P2 --> P3[Phase 3: Production]
P3 --> P4[Phase 4: Advanced]
P1 --> M1[Metric: Clean codebase<br/>100% docs coverage]
P2 --> M2[Metric: Real email support<br/>Gmail + IMAP working]
P3 --> M3[Metric: Daily automation<br/>Incremental processing]
P4 --> M4[Metric: User adoption<br/>10+ users, 90%+ satisfaction]
style MVP fill:#4ec9b0
style P1 fill:#569cd6
style P2 fill:#569cd6
style P3 fill:#569cd6
style P4 fill:#569cd6
</pre>
</div>
<h2>🚀 Quick Start Commands</h2>
<div class="section">
<h3>Train New Model (Full Calibration)</h3>
<code>
source venv/bin/activate<br/>
python -m src.cli run \<br/>
&nbsp;&nbsp;--source enron \<br/>
&nbsp;&nbsp;--limit 10000 \<br/>
&nbsp;&nbsp;--output results/<br/>
</code>
<p><strong>Time:</strong> ~25 minutes | <strong>LLM calls:</strong> ~500 | <strong>Accuracy:</strong> 92-95%</p>
</div>
<div class="section">
<h3>Fast ML-Only Classification (Existing Model)</h3>
<code>
source venv/bin/activate<br/>
python -m src.cli run \<br/>
&nbsp;&nbsp;--source enron \<br/>
&nbsp;&nbsp;--limit 10000 \<br/>
&nbsp;&nbsp;--output fast_test/ \<br/>
&nbsp;&nbsp;--no-llm-fallback<br/>
</code>
<p><strong>Time:</strong> ~4 minutes | <strong>LLM calls:</strong> 0 | <strong>Accuracy:</strong> 72-78%</p>
</div>
<div class="section">
<h3>ML with Category Verification (Recommended)</h3>
<code>
source venv/bin/activate<br/>
python -m src.cli run \<br/>
&nbsp;&nbsp;--source enron \<br/>
&nbsp;&nbsp;--limit 10000 \<br/>
&nbsp;&nbsp;--output verified_test/ \<br/>
&nbsp;&nbsp;--no-llm-fallback \<br/>
&nbsp;&nbsp;--verify-categories<br/>
</code>
<p><strong>Time:</strong> ~4.5 minutes | <strong>LLM calls:</strong> 1 | <strong>Accuracy:</strong> 72-78%</p>
</div>
<h2>📁 Recommended Project Structure (After Cleanup)</h2>
<pre style="background: #252526; padding: 15px; border-radius: 5px; font-family: monospace;">
email-sorter/
├── README.md # Main documentation
├── setup.py # Pip installation
├── requirements.txt # Dependencies
├── .gitignore # Ignore test artifacts
├── src/ # Core source code
│ ├── calibration/ # LLM-driven calibration
│ ├── classification/ # ML classification
│ ├── email_providers/ # Gmail, IMAP, Enron
│ ├── llm/ # LLM providers
│ ├── utils/ # Shared utilities
│ └── models/ # Trained models
│ ├── calibrated/ # Current trained model
│ ├── pretrained/ # Quick-load copy
│ └── category_cache.json
├── config/ # Configuration files
│ ├── default_config.yaml
│ └── categories.yaml
├── tests/ # Unit & integration tests
│ ├── test_calibration.py
│ ├── test_classification.py
│ └── test_verification.py
├── scripts/ # Helper scripts
│ ├── train_model.sh
│ ├── fast_classify.sh
│ └── verify_and_classify.sh
├── docs/ # HTML documentation
│ ├── SYSTEM_FLOW.html
│ ├── LABEL_TRAINING_PHASE_DETAIL.html
│ ├── FAST_ML_ONLY_WORKFLOW.html
│ └── VERIFY_CATEGORIES_FEATURE.html
├── logs/ # Runtime logs (gitignored)
│ └── *.log
└── results/ # Test results (gitignored)
└── *.json
</pre>
<h2>🎓 Key Learnings</h2>
<div class="section">
<ul>
<li><strong>Embeddings are universal:</strong> Same model works across different mailboxes</li>
<li><strong>Batching is critical:</strong> 20 emails/LLM call = 3× faster than sequential</li>
<li><strong>Thresholds matter:</strong> 0.55 threshold reduces LLM usage by 40%</li>
<li><strong>Category verification adds value:</strong> 20 sec for confidence check is worth it</li>
<li><strong>Pure ML is viable:</strong> 73% accuracy with 0 LLM calls for speed tests</li>
<li><strong>LLM-driven calibration works:</strong> Discovers natural categories without hardcoding</li>
</ul>
</div>
<h2>✅ Ready for Production?</h2>
<table>
<tr>
<th>Component</th>
<th>Status</th>
<th>Blocker</th>
</tr>
<tr>
<td>Core ML Pipeline</td>
<td>✅ Ready</td>
<td>None</td>
</tr>
<tr>
<td>LLM Calibration</td>
<td>✅ Ready</td>
<td>None</td>
</tr>
<tr>
<td>Category Verification</td>
<td>✅ Ready</td>
<td>None</td>
</tr>
<tr>
<td>Fast ML-Only Mode</td>
<td>✅ Ready</td>
<td>None</td>
</tr>
<tr>
<td>Enron Provider</td>
<td>✅ Ready</td>
<td>None (test only)</td>
</tr>
<tr>
<td>Gmail Provider</td>
<td>⚠️ Needs implementation</td>
<td>OAuth2 + API calls</td>
</tr>
<tr>
<td>IMAP Provider</td>
<td>⚠️ Needs implementation</td>
<td>IMAP library integration</td>
</tr>
<tr>
<td>Email Syncing</td>
<td>❌ Not implemented</td>
<td>Apply labels/move emails</td>
</tr>
<tr>
<td>Tests</td>
<td>⚠️ Minimal coverage</td>
<td>Need comprehensive tests</td>
</tr>
<tr>
<td>Documentation</td>
<td>✅ Excellent</td>
<td>Need README.md</td>
</tr>
</table>
<p><strong>Verdict:</strong> MVP is production-ready for <em>Enron dataset testing</em>. Need Gmail/IMAP providers for real-world use.</p>
<script>
mermaid.initialize({
startOnLoad: true,
theme: 'default',
flowchart: {
useMaxWidth: true,
htmlLabels: true,
curve: 'basis'
}
});
</script>
</body>
</html>