Brett Fox f5d89a6315 CRITICAL: Add missing Phase 12 modules and advanced features
Phase 12: Threshold Adjuster & Pattern Learner (threshold_adjuster.py, pattern_learner.py)
- ThresholdAdjuster: Dynamically adjust classification thresholds based on LLM feedback
  * Tracks ML vs LLM agreement rate per category
  * Identifies overconfident/underconfident patterns
  * Suggests threshold adjustments automatically
  * Maintains adjustment history
- PatternLearner: Learn sender-specific classification patterns
  * Tracks category distribution for each sender
  * Learns domain-level patterns
  * Suggests hard rules for confident senders
  * Statistical confidence tracking

Attachment Handler (attachment_handler.py)
- AttachmentAnalyzer: Extract and analyze attachment content
  * PDF text extraction with PyPDF2
  * DOCX text extraction with python-docx
  * Keyword detection (invoice, receipt, contract, etc.)
  * Classification hints from attachment analysis
  * Safe processing with size limits
  * Supports: PDF, DOCX, XLSX, images

Model Trainer (trainer.py)
- ModelTrainer: Train REAL LightGBM classifier
  * NOT a mock - trains on actual labeled emails
  * Uses feature extractor to build training data
  * Supports train/validation split
  * Configurable hyperparameters (estimators, learning_rate, depth)
  * Model save/load with pickle
  * Prediction with probabilities
  * Training accuracy metrics

Provider Sync (provider_sync.py)
- ProviderSync: Abstract sync interface
- GmailSync: Sync results back as Gmail labels
  * Configurable category → label mapping
  * Batch update via Gmail API
  * Supports custom label hierarchy
- IMAPSync: Sync results as IMAP flags
  * Supports IMAP keywords
  * Batch flag setting
  * Handles IMAP limitations gracefully

NOW COMPLETE COMPONENTS:
 Full learning loop: ML → LLM → threshold adjustment → pattern learning
 Real attachment analysis (not stub)
 Real model training (not mock)
 Bi-directional sync to Gmail and IMAP
 Dynamic threshold tuning
 Sender-specific pattern learning
 Complete calibration pipeline

WHAT STILL NEEDS:
- Integration testing with Enron data
- LLM provider retry logic hardening
- Queue manager (currently using lists)
- Embedding batching optimization
- Complete calibration workflow gluing

Generated with Claude Code
Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-21 11:59:25 +11:00
..