10,000 emails classified in 4 minutes
72.7% accuracy | 0 LLM calls | Pure ML speed
| Metric | Result | Status |
|---|---|---|
| Total emails processed | 10,000 | ✅ |
| Processing time | ~4 minutes | ✅ |
| ML classification rate | 78.4% | ✅ |
| LLM calls (with --no-llm-fallback) | 0 | ✅ |
| Accuracy estimate | 72.7% | ✅ (acceptable for speed) |
| Categories discovered | 11 (Work, Financial, Updates, etc.) | ✅ |
| Model size | 1.8MB | ✅ (portable) |
| Module | Purpose | Status |
|---|---|---|
src/cli.py |
Main CLI with all flags (--verify-categories, --no-llm-fallback) | ✅ Complete |
src/calibration/workflow.py |
LLM-driven category discovery + training | ✅ Complete |
src/calibration/llm_analyzer.py |
Batch LLM analysis (20 emails/call) | ✅ Complete |
src/calibration/category_verifier.py |
Single LLM call to verify categories | ✅ New feature |
src/classification/ml_classifier.py |
LightGBM model wrapper | ✅ Complete |
src/classification/adaptive_classifier.py |
Rule → ML → LLM orchestrator | ✅ Complete |
src/classification/feature_extractor.py |
Embeddings (384-dim) + TF-IDF | ✅ Complete |
| Asset | Location | Status |
|---|---|---|
| Trained model | src/models/calibrated/classifier.pkl |
✅ 1.8MB, 11 categories |
| Pretrained copy | src/models/pretrained/classifier.pkl |
✅ Ready for fast load |
| Category cache | src/models/category_cache.json |
✅ 10 cached categories |
| Test results | test/results.json |
✅ 10k classifications |
| Document | Purpose |
|---|---|
SYSTEM_FLOW.html |
Complete system flow diagrams with timing |
LABEL_TRAINING_PHASE_DETAIL.html |
Deep dive into calibration phase |
FAST_ML_ONLY_WORKFLOW.html |
Pure ML workflow analysis |
VERIFY_CATEGORIES_FEATURE.html |
Category verification documentation |
PROJECT_STATUS_AND_NEXT_STEPS.html |
This document - status and roadmap |
Goal: Move test artifacts and scripts to organized locations
docs/ folder - move all .html files therescripts/ folder - move all .sh files therelogs/ folder - move all .log files thereTime: 10 minutes
Goal: Professional project documentation
Time: 30 minutes
Goal: Ensure code quality and catch regressions
Time: 2 hours
Goal: Connect to real Gmail accounts
Time: 4-6 hours
Goal: Support any email provider (Outlook, custom servers)
Time: 3-4 hours
Goal: Move/label emails based on classification
Time: 6-8 hours
Goal: Only classify new emails, not entire inbox
Time: 4-6 hours
Goal: Manage multiple email accounts
Time: 3-4 hours
Goal: Handle model lifecycle
Time: 4-5 hours
Goal: Visual interface for monitoring and management
Time: 20-30 hours
Goal: Improve model from user corrections
Time: 8-10 hours
Goal: Scale to 100k+ emails
Time: 10-15 hours
| Task | Priority | Time | Status |
|---|---|---|---|
| Clean root directory - organize files | High | 10 min | Pending |
| Create comprehensive README.md | High | 30 min | Pending |
| Add .gitignore for test artifacts | High | 5 min | Pending |
| Create setup.py for pip installation | Medium | 20 min | Pending |
| Write basic unit tests | Medium | 2 hours | Pending |
| Test Gmail provider (basic fetch) | Medium | 2 hours | Pending |
flowchart LR
MVP[MVP Proven] --> P1[Phase 1: Organization]
P1 --> P2[Phase 2: Integration]
P2 --> P3[Phase 3: Production]
P3 --> P4[Phase 4: Advanced]
P1 --> M1[Metric: Clean codebase
100% docs coverage]
P2 --> M2[Metric: Real email support
Gmail + IMAP working]
P3 --> M3[Metric: Daily automation
Incremental processing]
P4 --> M4[Metric: User adoption
10+ users, 90%+ satisfaction]
style MVP fill:#4ec9b0
style P1 fill:#569cd6
style P2 fill:#569cd6
style P3 fill:#569cd6
style P4 fill:#569cd6
source venv/bin/activate
python -m src.cli run \
--source enron \
--limit 10000 \
--output results/
Time: ~25 minutes | LLM calls: ~500 | Accuracy: 92-95%
source venv/bin/activate
python -m src.cli run \
--source enron \
--limit 10000 \
--output fast_test/ \
--no-llm-fallback
Time: ~4 minutes | LLM calls: 0 | Accuracy: 72-78%
source venv/bin/activate
python -m src.cli run \
--source enron \
--limit 10000 \
--output verified_test/ \
--no-llm-fallback \
--verify-categories
Time: ~4.5 minutes | LLM calls: 1 | Accuracy: 72-78%
email-sorter/
├── README.md # Main documentation
├── setup.py # Pip installation
├── requirements.txt # Dependencies
├── .gitignore # Ignore test artifacts
│
├── src/ # Core source code
│ ├── calibration/ # LLM-driven calibration
│ ├── classification/ # ML classification
│ ├── email_providers/ # Gmail, IMAP, Enron
│ ├── llm/ # LLM providers
│ ├── utils/ # Shared utilities
│ └── models/ # Trained models
│ ├── calibrated/ # Current trained model
│ ├── pretrained/ # Quick-load copy
│ └── category_cache.json
│
├── config/ # Configuration files
│ ├── default_config.yaml
│ └── categories.yaml
│
├── tests/ # Unit & integration tests
│ ├── test_calibration.py
│ ├── test_classification.py
│ └── test_verification.py
│
├── scripts/ # Helper scripts
│ ├── train_model.sh
│ ├── fast_classify.sh
│ └── verify_and_classify.sh
│
├── docs/ # HTML documentation
│ ├── SYSTEM_FLOW.html
│ ├── LABEL_TRAINING_PHASE_DETAIL.html
│ ├── FAST_ML_ONLY_WORKFLOW.html
│ └── VERIFY_CATEGORIES_FEATURE.html
│
├── logs/ # Runtime logs (gitignored)
│ └── *.log
│
└── results/ # Test results (gitignored)
└── *.json
| Component | Status | Blocker |
|---|---|---|
| Core ML Pipeline | ✅ Ready | None |
| LLM Calibration | ✅ Ready | None |
| Category Verification | ✅ Ready | None |
| Fast ML-Only Mode | ✅ Ready | None |
| Enron Provider | ✅ Ready | None (test only) |
| Gmail Provider | ⚠️ Needs implementation | OAuth2 + API calls |
| IMAP Provider | ⚠️ Needs implementation | IMAP library integration |
| Email Syncing | ❌ Not implemented | Apply labels/move emails |
| Tests | ⚠️ Minimal coverage | Need comprehensive tests |
| Documentation | ✅ Excellent | Need README.md |
Verdict: MVP is production-ready for Enron dataset testing. Need Gmail/IMAP providers for real-world use.