# Session Handover Report - Email Sorter **Date:** 2025-11-28 **Session ID:** eb549838-a153-48d1-ae5d-891e0e83108f --- ## What Was Done This Session ### 1. Classified 801 emails from brett-gmail using three methods: | Method | Accuracy | Time | Output Location | |--------|----------|------|-----------------| | ML-Only | 54.9% | ~5 sec | `/home/bob/Documents/Email Manager/emails/brett-gm-md/` | | ML+LLM | 93.3% | ~3.5 min | `/home/bob/Documents/Email Manager/emails/brett-gm-llm/` | | Manual Agent | 99.8% | ~25 min | Same as ML-only + analysis files | ### 2. Created/Modified Files **New Files:** - `tools/generate_html_report.py` - HTML report generator - `tools/brett_gmail_analyzer.py` - Custom dataset analyzer - `data/brett_gmail_analysis.json` - Analysis output - `docs/REPORT_FORMAT.md` - Report system documentation - `docs/CLASSIFICATION_METHODS_COMPARISON.md` - Method comparison - `docs/PROJECT_ROADMAP_2025.md` - Full roadmap and learnings - `/home/bob/Documents/Email Manager/emails/brett-gm-md/BRETT_GMAIL_ANALYSIS_REPORT.md` - Analysis report - `/home/bob/Documents/Email Manager/emails/brett-gm-md/report.html` - HTML report (ML-only) - `/home/bob/Documents/Email Manager/emails/brett-gm-llm/report.html` - HTML report (ML+LLM) **Modified Files:** - `src/cli.py` - Added `--force-ml` flag, enriched results.json with email metadata - `src/llm/openai_compat.py` - Removed API key requirement for local vLLM - `config/default_config.yaml` - Changed LLM to openai provider on localhost:11433 ### 3. Key Configuration Changes ```yaml # config/default_config.yaml - LLM now uses vLLM endpoint llm: provider: "openai" openai: base_url: "http://localhost:11433/v1" api_key: "not-needed" classification_model: "qwen3-coder-30b" ``` --- ## Key Findings 1. **ML pipeline overkill for <5000 emails** - Agent analysis gives better accuracy in similar time 2. **Sender domain is strongest signal** - Top 5 senders = 47.5% of emails 3. **Categories should serve downstream routing** - Not human labels, but processing decisions 4. **Risk-based accuracy** - Personal emails need high accuracy, junk can tolerate errors 5. **This tool = triage** - Sorts into buckets for other specialized tools --- ## Project Scope (Agreed with User) **Email Sorter IS:** - Bulk classification/triage tool - Router to downstream specialized tools - Part of larger email processing ecosystem **Email Sorter IS NOT:** - Complete email management solution - Spam filter (trust Gmail/Outlook) - Final destination for emails --- ## Recommended Dataset Size Routing | Size | Method | |------|--------| | <500 | Agent-only | | 500-5000 | Agent pre-scan + ML | | >5000 | ML pipeline | --- ## Background Processes There are stale background bash processes (f8678e, 0a3549, 0d150e) from classification runs. These completed successfully and can be ignored. --- ## What Needs Doing Next 1. **Review docs/** - All learnings are in PROJECT_ROADMAP_2025.md 2. **Phase 1 development** - Dataset size routing, sender-first classification 3. **Agent pre-scan module** - 10-15 min discovery phase before ML --- ## User Preferences (from CLAUDE.md) - NO emojis in commits - NO "Generated with Claude" attribution - Use tools (Read/Edit/Grep) not bash commands for file ops - Virtual environment required for Python - TTS available via `fss-speak` (single line messages only, no newlines) --- ## Quick Start for Next Agent ```bash cd /MASTERFOLDER/Tools/email-sorter source venv/bin/activate # Read the roadmap cat docs/PROJECT_ROADMAP_2025.md # Run classification python -m src.cli run --source local \ --directory "/path/to/emails" \ --output "/path/to/output" \ --force-ml --llm-provider openai # Generate HTML report python tools/generate_html_report.py --input /path/to/results.json ``` --- *Session ended: 2025-11-28 ~03:30 AEDT*