Major fixes: - Fix model selection to prioritize qwen3:1.7b instead of qwen3:4b for testing - Correct context length from 80,000 to 32,000 tokens (proper Qwen3 limit) - Implement content-preserving safeguards instead of dropping responses - Fix all test imports from claude_rag to mini_rag module naming - Add virtual environment warnings to all test entry points - Fix TUI EOF crash handling with proper error handling - Remove warmup delays that were causing startup lag and unwanted model calls - Fix command mappings between bash wrapper and Python script - Update documentation to reflect qwen3:1.7b as primary recommendation - Improve TUI box alignment and formatting - Make language generic for any documents, not just codebases - Add proper folder names in user feedback instead of generic terms Technical improvements: - Unified model rankings across all components - Better error handling for missing dependencies - Comprehensive testing and validation of all fixes - All tests now pass and system is deployment-ready All major crashes and deployment issues resolved.
135 lines
4.5 KiB
Python
135 lines
4.5 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Simple demo of the hybrid search system showing real results.
|
|
"""
|
|
|
|
import sys
|
|
from pathlib import Path
|
|
from rich.console import Console
|
|
from rich.syntax import Syntax
|
|
from rich.panel import Panel
|
|
from rich.table import Table
|
|
|
|
from mini_rag.search import CodeSearcher
|
|
|
|
console = Console()
|
|
|
|
|
|
def demo_search(project_path: Path):
|
|
"""Run demo searches showing the hybrid system in action."""
|
|
|
|
console.print("\n[bold cyan]Mini RAG Hybrid Search Demo[/bold cyan]\n")
|
|
|
|
# Initialize searcher
|
|
console.print("Initializing search system...")
|
|
searcher = CodeSearcher(project_path)
|
|
|
|
# Get index stats
|
|
stats = searcher.get_statistics()
|
|
if 'error' not in stats:
|
|
console.print(f"\n[green] Index ready:[/green] {stats['total_chunks']} chunks from {stats['unique_files']} files")
|
|
console.print(f"[dim]Languages: {', '.join(stats['languages'].keys())}[/dim]")
|
|
console.print(f"[dim]Chunk types: {', '.join(stats['chunk_types'].keys())}[/dim]\n")
|
|
|
|
# Demo queries
|
|
demos = [
|
|
{
|
|
'title': 'Keyword-Heavy Search',
|
|
'query': 'BM25Okapi rank_bm25 search scoring',
|
|
'description': 'This query has specific technical keywords that BM25 excels at finding',
|
|
'top_k': 5
|
|
},
|
|
{
|
|
'title': 'Natural Language Query',
|
|
'query': 'how to build search index from database chunks',
|
|
'description': 'This semantic query benefits from transformer embeddings understanding intent',
|
|
'top_k': 5
|
|
},
|
|
{
|
|
'title': 'Mixed Technical Query',
|
|
'query': 'vector embeddings for semantic code search with transformers',
|
|
'description': 'This hybrid query combines technical terms with conceptual understanding',
|
|
'top_k': 5
|
|
},
|
|
{
|
|
'title': 'Function Search',
|
|
'query': 'search method implementation with filters',
|
|
'description': 'Looking for specific function implementations',
|
|
'top_k': 5
|
|
}
|
|
]
|
|
|
|
for demo in demos:
|
|
console.rule(f"\n[bold yellow]{demo['title']}[/bold yellow]")
|
|
console.print(f"[dim]{demo['description']}[/dim]")
|
|
console.print(f"\n[cyan]Query:[/cyan] '{demo['query']}'")
|
|
|
|
# Run search with hybrid mode
|
|
results = searcher.search(
|
|
query=demo['query'],
|
|
top_k=demo['top_k'],
|
|
semantic_weight=0.7,
|
|
bm25_weight=0.3
|
|
)
|
|
|
|
if not results:
|
|
console.print("[red]No results found![/red]")
|
|
continue
|
|
|
|
console.print(f"\n[green]Found {len(results)} results:[/green]\n")
|
|
|
|
# Show each result
|
|
for i, result in enumerate(results, 1):
|
|
# Create result panel
|
|
header = f"#{i} {result.file_path}:{result.start_line}-{result.end_line}"
|
|
|
|
# Get code preview
|
|
lines = result.content.splitlines()
|
|
if len(lines) > 10:
|
|
preview_lines = lines[:8] + ['...'] + lines[-2:]
|
|
else:
|
|
preview_lines = lines
|
|
|
|
preview = '\n'.join(preview_lines)
|
|
|
|
# Create info table
|
|
info = Table.grid(padding=0)
|
|
info.add_column(style="cyan", width=12)
|
|
info.add_column(style="white")
|
|
|
|
info.add_row("Score:", f"{result.score:.3f}")
|
|
info.add_row("Type:", result.chunk_type)
|
|
info.add_row("Name:", result.name or "N/A")
|
|
info.add_row("Language:", result.language)
|
|
|
|
# Display result
|
|
console.print(Panel(
|
|
f"{info}\n\n[dim]{preview}[/dim]",
|
|
title=header,
|
|
title_align="left",
|
|
border_style="blue"
|
|
))
|
|
|
|
# Show scoring breakdown for top result
|
|
if results:
|
|
console.print("\n[dim]Top result hybrid score: {:.3f} (70% semantic + 30% BM25)[/dim]".format(results[0].score))
|
|
|
|
|
|
def main():
|
|
"""Run the demo."""
|
|
if len(sys.argv) > 1:
|
|
project_path = Path(sys.argv[1])
|
|
else:
|
|
# Use the RAG system itself as the demo project
|
|
project_path = Path(__file__).parent
|
|
|
|
if not (project_path / '.mini-rag').exists():
|
|
console.print("[red]Error: No RAG index found. Run 'mini-rag index' first.[/red]")
|
|
console.print(f"[dim]Looked in: {project_path / '.mini-rag'}[/dim]")
|
|
return
|
|
|
|
demo_search(project_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |