Major fixes: - Fix model selection to prioritize qwen3:1.7b instead of qwen3:4b for testing - Correct context length from 80,000 to 32,000 tokens (proper Qwen3 limit) - Implement content-preserving safeguards instead of dropping responses - Fix all test imports from claude_rag to mini_rag module naming - Add virtual environment warnings to all test entry points - Fix TUI EOF crash handling with proper error handling - Remove warmup delays that were causing startup lag and unwanted model calls - Fix command mappings between bash wrapper and Python script - Update documentation to reflect qwen3:1.7b as primary recommendation - Improve TUI box alignment and formatting - Make language generic for any documents, not just codebases - Add proper folder names in user feedback instead of generic terms Technical improvements: - Unified model rankings across all components - Better error handling for missing dependencies - Comprehensive testing and validation of all fixes - All tests now pass and system is deployment-ready All major crashes and deployment issues resolved.
540 lines
22 KiB
Python
540 lines
22 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
LLM Synthesizer for RAG Results
|
|
|
|
Provides intelligent synthesis of search results using Ollama LLMs.
|
|
Takes raw search results and generates coherent, contextual summaries.
|
|
"""
|
|
|
|
import json
|
|
import logging
|
|
import time
|
|
from typing import List, Dict, Any, Optional
|
|
from dataclasses import dataclass
|
|
import requests
|
|
from pathlib import Path
|
|
|
|
try:
|
|
from .llm_safeguards import ModelRunawayDetector, SafeguardConfig, get_optimal_ollama_parameters
|
|
except ImportError:
|
|
# Graceful fallback if safeguards not available
|
|
ModelRunawayDetector = None
|
|
SafeguardConfig = None
|
|
get_optimal_ollama_parameters = lambda x: {}
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
@dataclass
|
|
class SynthesisResult:
|
|
"""Result of LLM synthesis."""
|
|
summary: str
|
|
key_points: List[str]
|
|
code_examples: List[str]
|
|
suggested_actions: List[str]
|
|
confidence: float
|
|
|
|
class LLMSynthesizer:
|
|
"""Synthesizes RAG search results using Ollama LLMs."""
|
|
|
|
def __init__(self, ollama_url: str = "http://localhost:11434", model: str = None, enable_thinking: bool = False, config=None):
|
|
self.ollama_url = ollama_url.rstrip('/')
|
|
self.available_models = []
|
|
self.model = model
|
|
self.enable_thinking = enable_thinking # Default False for synthesis mode
|
|
self._initialized = False
|
|
self.config = config # For accessing model rankings
|
|
|
|
# Initialize safeguards
|
|
if ModelRunawayDetector:
|
|
self.safeguard_detector = ModelRunawayDetector(SafeguardConfig())
|
|
else:
|
|
self.safeguard_detector = None
|
|
|
|
def _get_available_models(self) -> List[str]:
|
|
"""Get list of available Ollama models."""
|
|
try:
|
|
response = requests.get(f"{self.ollama_url}/api/tags", timeout=5)
|
|
if response.status_code == 200:
|
|
data = response.json()
|
|
return [model['name'] for model in data.get('models', [])]
|
|
except Exception as e:
|
|
logger.warning(f"Could not fetch Ollama models: {e}")
|
|
return []
|
|
|
|
def _select_best_model(self) -> str:
|
|
"""Select the best available model based on configuration rankings."""
|
|
if not self.available_models:
|
|
return "qwen2.5:1.5b" # Fallback preference
|
|
|
|
# Get model rankings from config or use defaults
|
|
if self.config and hasattr(self.config, 'llm') and hasattr(self.config.llm, 'model_rankings'):
|
|
model_rankings = self.config.llm.model_rankings
|
|
else:
|
|
# Fallback rankings if no config
|
|
model_rankings = [
|
|
"qwen3:1.7b", "qwen3:0.6b", "qwen3:4b", "llama3.2:1b",
|
|
"qwen2.5:1.5b", "qwen3:3b", "qwen2.5-coder:1.5b"
|
|
]
|
|
|
|
# Find first available model from our ranked list (exact matches first)
|
|
for preferred_model in model_rankings:
|
|
for available_model in self.available_models:
|
|
# Exact match first (e.g., "qwen3:1.7b" matches "qwen3:1.7b")
|
|
if preferred_model.lower() == available_model.lower():
|
|
logger.info(f"Selected exact match model: {available_model}")
|
|
return available_model
|
|
|
|
# Partial match with version handling (e.g., "qwen3:1.7b" matches "qwen3:1.7b-q8_0")
|
|
preferred_parts = preferred_model.lower().split(':')
|
|
available_parts = available_model.lower().split(':')
|
|
|
|
if len(preferred_parts) >= 2 and len(available_parts) >= 2:
|
|
if (preferred_parts[0] == available_parts[0] and
|
|
preferred_parts[1] in available_parts[1]):
|
|
logger.info(f"Selected version match model: {available_model}")
|
|
return available_model
|
|
|
|
# If no preferred models found, use first available
|
|
fallback = self.available_models[0]
|
|
logger.warning(f"Using fallback model: {fallback}")
|
|
return fallback
|
|
|
|
def _ensure_initialized(self):
|
|
"""Lazy initialization with LLM warmup."""
|
|
if self._initialized:
|
|
return
|
|
|
|
# Load available models
|
|
self.available_models = self._get_available_models()
|
|
if not self.model:
|
|
self.model = self._select_best_model()
|
|
|
|
# Skip warmup - models are fast enough and warmup causes delays
|
|
# Warmup removed to eliminate startup delays and unwanted model calls
|
|
|
|
self._initialized = True
|
|
|
|
def is_available(self) -> bool:
|
|
"""Check if Ollama is available and has models."""
|
|
self._ensure_initialized()
|
|
return len(self.available_models) > 0
|
|
|
|
def _call_ollama(self, prompt: str, temperature: float = 0.3, disable_thinking: bool = False, use_streaming: bool = False) -> Optional[str]:
|
|
"""Make a call to Ollama API with safeguards."""
|
|
start_time = time.time()
|
|
|
|
try:
|
|
# Use the best available model
|
|
model_to_use = self.model
|
|
if self.model not in self.available_models:
|
|
# Fallback to first available model
|
|
if self.available_models:
|
|
model_to_use = self.available_models[0]
|
|
else:
|
|
logger.error("No Ollama models available")
|
|
return None
|
|
|
|
# Handle thinking mode for Qwen3 models
|
|
final_prompt = prompt
|
|
use_thinking = self.enable_thinking and not disable_thinking
|
|
|
|
# For non-thinking mode, add <no_think> tag for Qwen3
|
|
if not use_thinking and "qwen3" in model_to_use.lower():
|
|
if not final_prompt.endswith(" <no_think>"):
|
|
final_prompt += " <no_think>"
|
|
|
|
# Get optimal parameters for this model
|
|
optimal_params = get_optimal_ollama_parameters(model_to_use)
|
|
|
|
# Qwen3-specific optimal parameters based on research
|
|
if "qwen3" in model_to_use.lower():
|
|
if use_thinking:
|
|
# Thinking mode: Temperature=0.6, TopP=0.95, TopK=20, PresencePenalty=1.5
|
|
qwen3_temp = 0.6
|
|
qwen3_top_p = 0.95
|
|
qwen3_top_k = 20
|
|
qwen3_presence = 1.5
|
|
else:
|
|
# Non-thinking mode: Temperature=0.7, TopP=0.8, TopK=20, PresencePenalty=1.5
|
|
qwen3_temp = 0.7
|
|
qwen3_top_p = 0.8
|
|
qwen3_top_k = 20
|
|
qwen3_presence = 1.5
|
|
else:
|
|
qwen3_temp = temperature
|
|
qwen3_top_p = optimal_params.get("top_p", 0.9)
|
|
qwen3_top_k = optimal_params.get("top_k", 40)
|
|
qwen3_presence = optimal_params.get("presence_penalty", 1.0)
|
|
|
|
payload = {
|
|
"model": model_to_use,
|
|
"prompt": final_prompt,
|
|
"stream": use_streaming,
|
|
"options": {
|
|
"temperature": qwen3_temp,
|
|
"top_p": qwen3_top_p,
|
|
"top_k": qwen3_top_k,
|
|
"num_ctx": 32000, # Critical: Qwen3 context length (32K token limit)
|
|
"num_predict": optimal_params.get("num_predict", 2000),
|
|
"repeat_penalty": optimal_params.get("repeat_penalty", 1.1),
|
|
"presence_penalty": qwen3_presence
|
|
}
|
|
}
|
|
|
|
# Handle streaming with early stopping
|
|
if use_streaming:
|
|
return self._handle_streaming_with_early_stop(payload, model_to_use, use_thinking, start_time)
|
|
|
|
response = requests.post(
|
|
f"{self.ollama_url}/api/generate",
|
|
json=payload,
|
|
timeout=65 # Slightly longer than safeguard timeout
|
|
)
|
|
|
|
if response.status_code == 200:
|
|
result = response.json()
|
|
|
|
# All models use standard response format
|
|
# Qwen3 thinking tokens are embedded in the response content itself as <think>...</think>
|
|
raw_response = result.get('response', '').strip()
|
|
|
|
# Log thinking content for Qwen3 debugging
|
|
if "qwen3" in model_to_use.lower() and use_thinking and "<think>" in raw_response:
|
|
thinking_start = raw_response.find("<think>")
|
|
thinking_end = raw_response.find("</think>")
|
|
if thinking_start != -1 and thinking_end != -1:
|
|
thinking_content = raw_response[thinking_start+7:thinking_end]
|
|
logger.info(f"Qwen3 thinking: {thinking_content[:100]}...")
|
|
|
|
# Apply safeguards to check response quality
|
|
if self.safeguard_detector and raw_response:
|
|
is_valid, issue_type, explanation = self.safeguard_detector.check_response_quality(
|
|
raw_response, prompt[:100], start_time # First 100 chars of prompt for context
|
|
)
|
|
|
|
if not is_valid:
|
|
logger.warning(f"Safeguard triggered: {issue_type}")
|
|
# Preserve original response but add safeguard warning
|
|
return self._create_safeguard_response_with_content(issue_type, explanation, raw_response)
|
|
|
|
return raw_response
|
|
else:
|
|
logger.error(f"Ollama API error: {response.status_code}")
|
|
return None
|
|
|
|
except Exception as e:
|
|
logger.error(f"Ollama call failed: {e}")
|
|
return None
|
|
|
|
def _create_safeguard_response(self, issue_type: str, explanation: str, original_prompt: str) -> str:
|
|
"""Create a helpful response when safeguards are triggered."""
|
|
return f"""⚠️ Model Response Issue Detected
|
|
|
|
{explanation}
|
|
|
|
**Original query context:** {original_prompt[:200]}{'...' if len(original_prompt) > 200 else ''}
|
|
|
|
**What happened:** The AI model encountered a common issue with small language models and was prevented from giving a problematic response.
|
|
|
|
**Your options:**
|
|
1. **Try again**: Ask the same question (often resolves itself)
|
|
2. **Rephrase**: Make your question more specific or break it into parts
|
|
3. **Use exploration mode**: `rag-mini explore` for complex questions
|
|
4. **Different approach**: Try synthesis mode: `--synthesize` for simpler responses
|
|
|
|
This is normal with smaller AI models and helps ensure you get quality responses."""
|
|
|
|
def _create_safeguard_response_with_content(self, issue_type: str, explanation: str, original_response: str) -> str:
|
|
"""Create a response that preserves the original content but adds a safeguard warning."""
|
|
|
|
# For Qwen3, extract the actual response (after thinking)
|
|
actual_response = original_response
|
|
if "<think>" in original_response and "</think>" in original_response:
|
|
thinking_end = original_response.find("</think>")
|
|
if thinking_end != -1:
|
|
actual_response = original_response[thinking_end + 8:].strip()
|
|
|
|
# If we have useful content, preserve it with a warning
|
|
if len(actual_response.strip()) > 20:
|
|
return f"""⚠️ **Response Quality Warning** ({issue_type})
|
|
|
|
{explanation}
|
|
|
|
---
|
|
|
|
**AI Response (use with caution):**
|
|
|
|
{actual_response}
|
|
|
|
---
|
|
|
|
💡 **Note**: This response may have quality issues. Consider rephrasing your question or trying exploration mode for better results."""
|
|
else:
|
|
# If content is too short or problematic, use the original safeguard response
|
|
return f"""⚠️ Model Response Issue Detected
|
|
|
|
{explanation}
|
|
|
|
**What happened:** The AI model encountered a common issue with small language models.
|
|
|
|
**Your options:**
|
|
1. **Try again**: Ask the same question (often resolves itself)
|
|
2. **Rephrase**: Make your question more specific or break it into parts
|
|
3. **Use exploration mode**: `rag-mini explore` for complex questions
|
|
|
|
This is normal with smaller AI models and helps ensure you get quality responses."""
|
|
|
|
def _handle_streaming_with_early_stop(self, payload: dict, model_name: str, use_thinking: bool, start_time: float) -> Optional[str]:
|
|
"""Handle streaming response with intelligent early stopping."""
|
|
import json
|
|
|
|
try:
|
|
response = requests.post(
|
|
f"{self.ollama_url}/api/generate",
|
|
json=payload,
|
|
stream=True,
|
|
timeout=65
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
logger.error(f"Ollama API error: {response.status_code}")
|
|
return None
|
|
|
|
full_response = ""
|
|
word_buffer = []
|
|
repetition_window = 30 # Check last 30 words for repetition (more context)
|
|
stop_threshold = 0.8 # Stop only if 80% of recent words are repetitive (very permissive)
|
|
min_response_length = 100 # Don't early stop until we have at least 100 chars
|
|
|
|
for line in response.iter_lines():
|
|
if line:
|
|
try:
|
|
chunk_data = json.loads(line.decode('utf-8'))
|
|
chunk_text = chunk_data.get('response', '')
|
|
|
|
if chunk_text:
|
|
full_response += chunk_text
|
|
|
|
# Add words to buffer for repetition detection
|
|
new_words = chunk_text.split()
|
|
word_buffer.extend(new_words)
|
|
|
|
# Keep only recent words in buffer
|
|
if len(word_buffer) > repetition_window:
|
|
word_buffer = word_buffer[-repetition_window:]
|
|
|
|
# Check for repetition patterns after we have enough words AND content
|
|
if len(word_buffer) >= repetition_window and len(full_response) >= min_response_length:
|
|
unique_words = set(word_buffer)
|
|
repetition_ratio = 1 - (len(unique_words) / len(word_buffer))
|
|
|
|
# Early stop only if repetition is EXTREMELY high (80%+)
|
|
if repetition_ratio > stop_threshold:
|
|
logger.info(f"Early stopping due to repetition: {repetition_ratio:.2f}")
|
|
|
|
# Add a gentle completion to the response
|
|
if not full_response.strip().endswith(('.', '!', '?')):
|
|
full_response += "..."
|
|
|
|
# Send stop signal to model (attempt to gracefully stop)
|
|
try:
|
|
stop_payload = {"model": model_name, "stop": True}
|
|
requests.post(f"{self.ollama_url}/api/generate", json=stop_payload, timeout=2)
|
|
except:
|
|
pass # If stop fails, we already have partial response
|
|
|
|
break
|
|
|
|
if chunk_data.get('done', False):
|
|
break
|
|
|
|
except json.JSONDecodeError:
|
|
continue
|
|
|
|
return full_response.strip()
|
|
|
|
except Exception as e:
|
|
logger.error(f"Streaming with early stop failed: {e}")
|
|
return None
|
|
|
|
def synthesize_search_results(self, query: str, results: List[Any], project_path: Path) -> SynthesisResult:
|
|
"""Synthesize search results into a coherent summary."""
|
|
|
|
self._ensure_initialized()
|
|
if not self.is_available():
|
|
return SynthesisResult(
|
|
summary="LLM synthesis unavailable (Ollama not running or no models)",
|
|
key_points=[],
|
|
code_examples=[],
|
|
suggested_actions=["Install and run Ollama with a model"],
|
|
confidence=0.0
|
|
)
|
|
|
|
# Prepare context from search results
|
|
context_parts = []
|
|
for i, result in enumerate(results[:8], 1): # Limit to top 8 results
|
|
file_path = result.file_path if hasattr(result, 'file_path') else 'unknown'
|
|
content = result.content if hasattr(result, 'content') else str(result)
|
|
score = result.score if hasattr(result, 'score') else 0.0
|
|
|
|
context_parts.append(f"""
|
|
Result {i} (Score: {score:.3f}):
|
|
File: {file_path}
|
|
Content: {content[:500]}{'...' if len(content) > 500 else ''}
|
|
""")
|
|
|
|
context = "\n".join(context_parts)
|
|
|
|
# Create synthesis prompt
|
|
prompt = f"""You are a senior software engineer analyzing code search results. Your task is to synthesize the search results into a helpful, actionable summary.
|
|
|
|
SEARCH QUERY: "{query}"
|
|
PROJECT: {project_path.name}
|
|
|
|
SEARCH RESULTS:
|
|
{context}
|
|
|
|
Please provide a synthesis in the following JSON format:
|
|
{{
|
|
"summary": "A 2-3 sentence overview of what the search results show",
|
|
"key_points": [
|
|
"Important finding 1",
|
|
"Important finding 2",
|
|
"Important finding 3"
|
|
],
|
|
"code_examples": [
|
|
"Relevant code snippet or pattern from the results",
|
|
"Another important code example"
|
|
],
|
|
"suggested_actions": [
|
|
"What the developer should do next",
|
|
"Additional recommendations"
|
|
],
|
|
"confidence": 0.85
|
|
}}
|
|
|
|
Focus on:
|
|
- What the code does and how it works
|
|
- Patterns and relationships between the results
|
|
- Practical next steps for the developer
|
|
- Code quality observations
|
|
|
|
Respond with ONLY the JSON, no other text."""
|
|
|
|
# Get LLM response
|
|
response = self._call_ollama(prompt, temperature=0.2)
|
|
|
|
if not response:
|
|
return SynthesisResult(
|
|
summary="LLM synthesis failed (API error)",
|
|
key_points=[],
|
|
code_examples=[],
|
|
suggested_actions=["Check Ollama status and try again"],
|
|
confidence=0.0
|
|
)
|
|
|
|
# Parse JSON response
|
|
try:
|
|
# Extract JSON from response (in case there's extra text)
|
|
start_idx = response.find('{')
|
|
end_idx = response.rfind('}') + 1
|
|
if start_idx >= 0 and end_idx > start_idx:
|
|
json_str = response[start_idx:end_idx]
|
|
data = json.loads(json_str)
|
|
|
|
return SynthesisResult(
|
|
summary=data.get('summary', 'No summary generated'),
|
|
key_points=data.get('key_points', []),
|
|
code_examples=data.get('code_examples', []),
|
|
suggested_actions=data.get('suggested_actions', []),
|
|
confidence=float(data.get('confidence', 0.5))
|
|
)
|
|
else:
|
|
# Fallback: use the raw response as summary
|
|
return SynthesisResult(
|
|
summary=response[:300] + '...' if len(response) > 300 else response,
|
|
key_points=[],
|
|
code_examples=[],
|
|
suggested_actions=[],
|
|
confidence=0.3
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to parse LLM response: {e}")
|
|
return SynthesisResult(
|
|
summary="LLM synthesis failed (JSON parsing error)",
|
|
key_points=[],
|
|
code_examples=[],
|
|
suggested_actions=["Try the search again or check LLM output"],
|
|
confidence=0.0
|
|
)
|
|
|
|
def format_synthesis_output(self, synthesis: SynthesisResult, query: str) -> str:
|
|
"""Format synthesis result for display."""
|
|
|
|
output = []
|
|
output.append("🧠 LLM SYNTHESIS")
|
|
output.append("=" * 50)
|
|
output.append("")
|
|
|
|
output.append(f"📝 Summary:")
|
|
output.append(f" {synthesis.summary}")
|
|
output.append("")
|
|
|
|
if synthesis.key_points:
|
|
output.append("🔍 Key Findings:")
|
|
for point in synthesis.key_points:
|
|
output.append(f" • {point}")
|
|
output.append("")
|
|
|
|
if synthesis.code_examples:
|
|
output.append("💡 Code Patterns:")
|
|
for example in synthesis.code_examples:
|
|
output.append(f" {example}")
|
|
output.append("")
|
|
|
|
if synthesis.suggested_actions:
|
|
output.append("🎯 Suggested Actions:")
|
|
for action in synthesis.suggested_actions:
|
|
output.append(f" • {action}")
|
|
output.append("")
|
|
|
|
confidence_emoji = "🟢" if synthesis.confidence > 0.7 else "🟡" if synthesis.confidence > 0.4 else "🔴"
|
|
output.append(f"{confidence_emoji} Confidence: {synthesis.confidence:.1%}")
|
|
output.append("")
|
|
|
|
return "\n".join(output)
|
|
|
|
# Quick test function
|
|
def test_synthesizer():
|
|
"""Test the synthesizer with sample data."""
|
|
from dataclasses import dataclass
|
|
|
|
@dataclass
|
|
class MockResult:
|
|
file_path: str
|
|
content: str
|
|
score: float
|
|
|
|
synthesizer = LLMSynthesizer()
|
|
|
|
if not synthesizer.is_available():
|
|
print("❌ Ollama not available for testing")
|
|
return
|
|
|
|
# Mock search results
|
|
results = [
|
|
MockResult("auth.py", "def authenticate_user(username, password):\n return verify_credentials(username, password)", 0.95),
|
|
MockResult("models.py", "class User:\n def login(self):\n return authenticate_user(self.username, self.password)", 0.87)
|
|
]
|
|
|
|
synthesis = synthesizer.synthesize_search_results(
|
|
"user authentication",
|
|
results,
|
|
Path("/test/project")
|
|
)
|
|
|
|
print(synthesizer.format_synthesis_output(synthesis, "user authentication"))
|
|
|
|
if __name__ == "__main__":
|
|
test_synthesizer() |