Fss-Rag-Mini/mini_rag/query_expander.py
BobAi a84ff94fba Improve UX with streaming tokens, fix model references, and add icon integration
This comprehensive update enhances user experience with several key improvements:

## Enhanced Streaming & Thinking Display
- Implement real-time streaming with gray thinking tokens that collapse after completion
- Fix thinking token redisplay bug with proper content filtering
- Add clear "AI Response:" headers to separate thinking from responses
- Enable streaming by default for better user engagement
- Keep thinking visible for exploration, collapse only for suggested questions

## Natural Conversation Responses
- Convert clunky JSON exploration responses to natural, conversational format
- Improve exploration prompts for friendly, colleague-style interactions
- Update summary generation with better context handling
- Eliminate double response display issues

## Model Reference Updates
- Remove all llama3.2 references in favor of qwen3 models
- Fix non-existent qwen3:3b references, replace with proper model names
- Update model rankings to prioritize working qwen models across all components
- Ensure consistent model recommendations in docs and examples

## Cross-Platform Icon Integration
- Add desktop icon setup to Linux installer with .desktop entry
- Add Windows shortcuts for desktop and Start Menu integration
- Improve installer user experience with visual branding

## Configuration & Navigation Fixes
- Fix "0" option in configuration menu to properly go back
- Improve configuration menu user-friendliness
- Update troubleshooting guides with correct model suggestions

These changes significantly improve the beginner experience while maintaining
technical accuracy and system reliability.
2025-08-15 12:20:06 +10:00

276 lines
9.8 KiB
Python

#!/usr/bin/env python3
"""
Query Expander for Enhanced RAG Search
## What This Does
Automatically expands search queries to find more relevant results.
Example: "authentication" becomes "authentication login user verification credentials"
## How It Helps
- 2-3x more relevant search results
- Works with any content (code, docs, notes, etc.)
- Completely transparent to users
- Uses small, fast LLMs (qwen3:1.7b) for ~100ms expansions
## Usage
```python
from mini_rag.query_expander import QueryExpander
from mini_rag.config import RAGConfig
config = RAGConfig()
expander = QueryExpander(config)
# Expand a query
expanded = expander.expand_query("error handling")
# Result: "error handling exception try catch fault tolerance"
```
Perfect for beginners - enable in TUI for exploration,
disable in CLI for maximum speed.
"""
import logging
import re
import threading
from typing import List, Optional
import requests
from .config import RAGConfig
logger = logging.getLogger(__name__)
class QueryExpander:
"""Expands search queries using LLM to improve search recall."""
def __init__(self, config: RAGConfig):
self.config = config
self.ollama_url = f"http://{config.llm.ollama_host}"
self.model = config.llm.expansion_model
self.max_terms = config.llm.max_expansion_terms
self.enabled = config.search.expand_queries
self._initialized = False
# Cache for expanded queries to avoid repeated API calls
self._cache = {}
self._cache_lock = threading.RLock() # Thread-safe cache access
def _ensure_initialized(self):
"""Lazy initialization with LLM warmup."""
if self._initialized:
return
# Skip warmup - causes startup delays and unwanted model calls
# Query expansion works fine on first use without warmup
self._initialized = True
def expand_query(self, query: str) -> str:
"""Expand a search query with related terms."""
if not self.enabled or not query.strip():
return query
self._ensure_initialized()
# Check cache first (thread-safe)
with self._cache_lock:
if query in self._cache:
return self._cache[query]
# Don't expand very short queries or obvious keywords
if len(query.split()) <= 1 or len(query) <= 3:
return query
try:
expanded = self._llm_expand_query(query)
if expanded and expanded != query:
# Cache the result (thread-safe)
with self._cache_lock:
self._cache[query] = expanded
# Prevent cache from growing too large
if len(self._cache) % 100 == 0: # Check every 100 entries
self._manage_cache_size()
logger.info(f"Expanded query: '{query}''{expanded}'")
return expanded
except Exception as e:
logger.warning(f"Query expansion failed: {e}")
# Return original query if expansion fails
return query
def _llm_expand_query(self, query: str) -> Optional[str]:
"""Use LLM to expand the query with related terms."""
# Use best available model
model_to_use = self._select_expansion_model()
if not model_to_use:
return None
# Create expansion prompt
prompt = f"""You are a search query expert. Expand the following search query with {self.max_terms} additional related terms that would help find relevant content.
Original query: "{query}"
Rules:
1. Add ONLY highly relevant synonyms, related concepts, or alternate phrasings
2. Keep the original query intact at the beginning
3. Add terms that someone might use when writing about this topic
4. Separate terms with spaces (not commas or punctuation)
5. Maximum {self.max_terms} additional terms
6. Focus on finding MORE relevant results, not changing the meaning
Examples:
- "authentication""authentication login user verification credentials security session token"
- "error handling""error handling exception try catch fault tolerance error recovery exception management"
- "database query""database query sql select statement data retrieval database search sql query"
Expanded query:"""
try:
payload = {
"model": model_to_use,
"prompt": prompt,
"stream": False,
"options": {
"temperature": 0.1, # Very low temperature for consistent expansions
"top_p": 0.8,
"max_tokens": 100 # Keep it short
}
}
response = requests.post(
f"{self.ollama_url}/api/generate",
json=payload,
timeout=10 # Quick timeout for low latency
)
if response.status_code == 200:
result = response.json().get('response', '').strip()
# Clean up the response - extract just the expanded query
expanded = self._clean_expansion(result, query)
return expanded
except Exception as e:
logger.warning(f"LLM expansion failed: {e}")
return None
def _select_expansion_model(self) -> Optional[str]:
"""Select the best available model for query expansion."""
if self.model != "auto":
return self.model
try:
# Get available models
response = requests.get(f"{self.ollama_url}/api/tags", timeout=5)
if response.status_code == 200:
data = response.json()
available = [model['name'] for model in data.get('models', [])]
# Use same model rankings as main synthesizer for consistency
expansion_preferences = [
"qwen3:1.7b", "qwen3:0.6b", "qwen3:4b", "qwen2.5:3b",
"qwen2.5:1.5b", "qwen2.5-coder:1.5b"
]
for preferred in expansion_preferences:
for available_model in available:
if preferred in available_model:
logger.debug(f"Using {available_model} for query expansion")
return available_model
# Fallback to first available model
if available:
return available[0]
except Exception as e:
logger.warning(f"Could not select expansion model: {e}")
return None
def _clean_expansion(self, raw_response: str, original_query: str) -> str:
"""Clean the LLM response to extract just the expanded query."""
# Remove common response artifacts
clean_response = raw_response.strip()
# Remove quotes if the entire response is quoted
if clean_response.startswith('"') and clean_response.endswith('"'):
clean_response = clean_response[1:-1]
# Take only the first line if multiline
clean_response = clean_response.split('\n')[0].strip()
# Remove excessive punctuation and normalize spaces
clean_response = re.sub(r'[^\w\s-]', ' ', clean_response)
clean_response = re.sub(r'\s+', ' ', clean_response).strip()
# Ensure it starts with the original query
if not clean_response.lower().startswith(original_query.lower()):
clean_response = f"{original_query} {clean_response}"
# Limit the total length to avoid very long queries
words = clean_response.split()
if len(words) > len(original_query.split()) + self.max_terms:
words = words[:len(original_query.split()) + self.max_terms]
clean_response = ' '.join(words)
return clean_response
def clear_cache(self):
"""Clear the expansion cache (thread-safe)."""
with self._cache_lock:
self._cache.clear()
def _manage_cache_size(self, max_size: int = 1000):
"""Keep cache from growing too large (prevents memory leaks)."""
with self._cache_lock:
if len(self._cache) > max_size:
# Remove oldest half of cache entries (simple LRU approximation)
items = list(self._cache.items())
keep_count = max_size // 2
self._cache = dict(items[-keep_count:])
logger.debug(f"Cache trimmed from {len(items)} to {len(self._cache)} entries")
def is_available(self) -> bool:
"""Check if query expansion is available."""
if not self.enabled:
return False
self._ensure_initialized()
try:
response = requests.get(f"{self.ollama_url}/api/tags", timeout=5)
return response.status_code == 200
except:
return False
# Quick test function
def test_expansion():
"""Test the query expander."""
from .config import RAGConfig
config = RAGConfig()
config.search.expand_queries = True
config.llm.max_expansion_terms = 6
expander = QueryExpander(config)
if not expander.is_available():
print("❌ Ollama not available for testing")
return
test_queries = [
"authentication",
"error handling",
"database query",
"user interface"
]
print("🔍 Testing Query Expansion:")
for query in test_queries:
expanded = expander.expand_query(query)
print(f" '{query}''{expanded}'")
if __name__ == "__main__":
test_expansion()