Fss-Rag-Mini/tests/test_rag_integration.py
BobAi c201b3badd Fix critical deployment issues and improve system reliability
Major fixes:
- Fix model selection to prioritize qwen3:1.7b instead of qwen3:4b for testing
- Correct context length from 80,000 to 32,000 tokens (proper Qwen3 limit)
- Implement content-preserving safeguards instead of dropping responses
- Fix all test imports from claude_rag to mini_rag module naming
- Add virtual environment warnings to all test entry points
- Fix TUI EOF crash handling with proper error handling
- Remove warmup delays that were causing startup lag and unwanted model calls
- Fix command mappings between bash wrapper and Python script
- Update documentation to reflect qwen3:1.7b as primary recommendation
- Improve TUI box alignment and formatting
- Make language generic for any documents, not just codebases
- Add proper folder names in user feedback instead of generic terms

Technical improvements:
- Unified model rankings across all components
- Better error handling for missing dependencies
- Comprehensive testing and validation of all fixes
- All tests now pass and system is deployment-ready

All major crashes and deployment issues resolved.
2025-08-15 09:47:15 +10:00

277 lines
7.9 KiB
Python

#!/usr/bin/env python3
"""
Test RAG system integration with smart chunking.
⚠️ IMPORTANT: This test requires the virtual environment to be activated:
source .venv/bin/activate
PYTHONPATH=. python tests/test_rag_integration.py
Or run directly with venv:
source .venv/bin/activate && PYTHONPATH=. python tests/test_rag_integration.py
"""
import tempfile
import shutil
import os
from pathlib import Path
from mini_rag.indexer import ProjectIndexer
from mini_rag.search import CodeSearcher
# Check if virtual environment is activated
def check_venv():
if 'VIRTUAL_ENV' not in os.environ:
print("⚠️ WARNING: Virtual environment not detected!")
print(" This test requires the virtual environment to be activated.")
print(" Run: source .venv/bin/activate && PYTHONPATH=. python tests/test_rag_integration.py")
print(" Continuing anyway...\n")
check_venv()
# Sample Python file with proper structure
sample_code = '''"""
Sample module for testing RAG system.
This module demonstrates various Python constructs.
"""
import os
import sys
from typing import List, Dict, Optional
from dataclasses import dataclass
# Module-level constants
DEFAULT_TIMEOUT = 30
MAX_RETRIES = 3
@dataclass
class Config:
"""Configuration dataclass."""
timeout: int = DEFAULT_TIMEOUT
retries: int = MAX_RETRIES
class DataProcessor:
"""
Main data processor class.
This class handles the processing of various data types
and provides a unified interface for data operations.
"""
def __init__(self, config: Config):
"""
Initialize the processor with configuration.
Args:
config: Configuration object
"""
self.config = config
self._cache = {}
self._initialized = False
def process(self, data: List[Dict]) -> List[Dict]:
"""
Process a list of data items.
Args:
data: List of dictionaries to process
Returns:
Processed data list
"""
if not self._initialized:
self._initialize()
results = []
for item in data:
processed = self._process_item(item)
results.append(processed)
return results
def _initialize(self):
"""Initialize internal state."""
self._cache.clear()
self._initialized = True
def _process_item(self, item: Dict) -> Dict:
"""Process a single item."""
# Implementation details
return {**item, 'processed': True}
def main():
"""Main entry point."""
config = Config()
processor = DataProcessor(config)
test_data = [
{'id': 1, 'value': 'test1'},
{'id': 2, 'value': 'test2'},
]
results = processor.process(test_data)
print(f"Processed {len(results)} items")
if __name__ == "__main__":
main()
'''
# Sample markdown file
sample_markdown = '''# RAG System Documentation
## Overview
This is the documentation for the RAG system that demonstrates
smart chunking capabilities.
## Features
### Smart Code Chunking
The system intelligently chunks code files by:
- Keeping docstrings with their functions/classes
- Creating logical boundaries at function and class definitions
- Preserving context through parent-child relationships
### Markdown Support
Markdown files are chunked by sections with:
- Header-based splitting
- Context overlap between chunks
- Preservation of document structure
## Usage
### Basic Example
```python
from mini_rag import ProjectIndexer
indexer = ProjectIndexer("/path/to/project")
indexer.index_project()
```
### Advanced Configuration
You can customize the chunking behavior:
```python
from mini_rag import CodeChunker
chunker = CodeChunker(
max_chunk_size=1000,
min_chunk_size=50
)
```
## API Reference
### ProjectIndexer
Main class for indexing projects.
### CodeSearcher
Provides semantic search capabilities.
'''
def test_integration():
"""Test the complete RAG system with smart chunking."""
# Create temporary project directory
with tempfile.TemporaryDirectory() as tmpdir:
project_path = Path(tmpdir)
# Create test files
(project_path / "processor.py").write_text(sample_code)
(project_path / "README.md").write_text(sample_markdown)
print("=" * 60)
print("TESTING RAG SYSTEM INTEGRATION")
print("=" * 60)
# Index the project
print("\n1. Indexing project...")
indexer = ProjectIndexer(project_path)
stats = indexer.index_project()
print(f" - Files indexed: {stats['files_indexed']}")
print(f" - Total chunks: {stats['chunks_created']}")
print(f" - Indexing time: {stats['time_taken']:.2f}s")
# Verify chunks were created properly
print("\n2. Verifying chunk metadata...")
# Initialize searcher
searcher = CodeSearcher(project_path)
# Search for specific content
print("\n3. Testing search functionality...")
# Test 1: Search for class with docstring
results = searcher.search("data processor class unified interface", top_k=3)
print(f"\n Test 1 - Class search:")
for i, result in enumerate(results[:1]):
print(f" - Match {i+1}: {result.file_path}")
print(f" Chunk type: {result.chunk_type}")
print(f" Score: {result.score:.3f}")
if 'This class handles' in result.content:
print(" [OK] Docstring included with class")
else:
print(" [FAIL] Docstring not found")
# Test 2: Search for method with docstring
results = searcher.search("process list of data items", top_k=3)
print(f"\n Test 2 - Method search:")
for i, result in enumerate(results[:1]):
print(f" - Match {i+1}: {result.file_path}")
print(f" Chunk type: {result.chunk_type}")
print(f" Parent class: {getattr(result, 'parent_class', 'N/A')}")
if 'Args:' in result.content and 'Returns:' in result.content:
print(" [OK] Docstring included with method")
else:
print(" [FAIL] Method docstring not complete")
# Test 3: Search markdown content
results = searcher.search("smart chunking capabilities markdown", top_k=3)
print(f"\n Test 3 - Markdown search:")
for i, result in enumerate(results[:1]):
print(f" - Match {i+1}: {result.file_path}")
print(f" Chunk type: {result.chunk_type}")
print(f" Lines: {result.start_line}-{result.end_line}")
# Test 4: Verify chunk navigation
print(f"\n Test 4 - Chunk navigation:")
all_results = searcher.search("", top_k=100) # Get all chunks
py_chunks = [r for r in all_results if r.file_path.endswith('.py')]
if py_chunks:
first_chunk = py_chunks[0]
print(f" - First chunk: index={getattr(first_chunk, 'chunk_index', 'N/A')}")
print(f" Next chunk ID: {getattr(first_chunk, 'next_chunk_id', 'N/A')}")
# Verify chain
valid_chain = True
for i in range(len(py_chunks) - 1):
curr = py_chunks[i]
next_chunk = py_chunks[i + 1]
expected_next = f"processor_{i+1}"
if getattr(curr, 'next_chunk_id', None) != expected_next:
valid_chain = False
break
if valid_chain:
print(" [OK] Chunk navigation chain is valid")
else:
print(" [FAIL] Chunk navigation chain broken")
print("\n" + "=" * 60)
print("INTEGRATION TEST COMPLETED")
print("=" * 60)
if __name__ == "__main__":
test_integration()