# FSS-Mini-RAG Deployment Guide > **Run semantic search anywhere - from smartphones to edge devices** > *Complete guide to deploying FSS-Mini-RAG on every platform imaginable* ## Platform Compatibility Matrix | Platform | Status | AI Features | Installation | Notes | |----------|--------|-------------|--------------|-------| | **Linux** | ✅ Full | ✅ Full | `./install_mini_rag.sh` | Primary platform | | **Windows** | ✅ Full | ✅ Full | `install_windows.bat` | Desktop shortcuts | | **macOS** | ✅ Full | ✅ Full | `./install_mini_rag.sh` | Works perfectly | | **Raspberry Pi** | ✅ Excellent | ✅ AI ready | `./install_mini_rag.sh` | ARM64 optimized | | **Android (Termux)** | ✅ Good | 🟡 Limited | Manual install | Terminal interface | | **iOS (a-Shell)** | 🟡 Limited | ❌ Text only | Manual install | Sandbox limitations | | **Docker** | ✅ Excellent | ✅ Full | Dockerfile | Any platform | ## Desktop & Server Deployment ### 🐧 **Linux** (Primary Platform) ```bash # Full installation with AI features ./install_mini_rag.sh # What you get: # ✅ Desktop shortcuts (.desktop files) # ✅ Application menu integration # ✅ Full AI model downloads # ✅ Complete terminal interface ``` ### 🪟 **Windows** (Fully Supported) ```cmd # Full installation with desktop integration install_windows.bat # What you get: # ✅ Desktop shortcuts (.lnk files) # ✅ Start Menu entries # ✅ Full AI model downloads # ✅ Beautiful terminal interface ``` ### 🍎 **macOS** (Excellent Support) ```bash # Same as Linux - works perfectly ./install_mini_rag.sh # Additional macOS optimizations: brew install python3 # If needed brew install ollama # For AI features ``` **macOS-specific features:** - Automatic path detection for common project locations - Integration with Spotlight search locations - Support for `.app` bundle creation (advanced) ## Edge Device Deployment ### 🥧 **Raspberry Pi** (Recommended Edge Platform) **Perfect for:** - Home lab semantic search server - Portable development environment - IoT project documentation search - Offline code search station **Installation:** ```bash # On Raspberry Pi OS (64-bit recommended) sudo apt update && sudo apt upgrade ./install_mini_rag.sh # The installer automatically detects ARM and optimizes: # ✅ Suggests lightweight models (qwen3:0.6b) # ✅ Reduces memory usage # ✅ Enables efficient chunking ``` **Raspberry Pi optimized config:** ```yaml # Automatically generated for Pi embedding: preferred_method: ollama ollama_model: nomic-embed-text # 270MB - perfect for Pi llm: synthesis_model: qwen3:0.6b # 500MB - fast on Pi 4+ context_window: 4096 # Conservative memory use cpu_optimized: true chunking: max_size: 1500 # Smaller chunks for efficiency ``` **Performance expectations:** - **Pi 4 (4GB)**: Excellent performance, full AI features - **Pi 4 (2GB)**: Good performance, text-only or small models - **Pi 5**: Outstanding performance, handles large models - **Pi Zero**: Text-only search (hash-based embeddings) ### 🔧 **Other Edge Devices** **NVIDIA Jetson Series:** - Overkill performance for this use case - Can run largest models with GPU acceleration - Perfect for AI-heavy development workstations **Intel NUC / Mini PCs:** - Excellent performance - Full desktop experience - Can serve multiple users simultaneously **Orange Pi / Rock Pi:** - Similar to Raspberry Pi - Same installation process - May need manual Ollama compilation ## Mobile Deployment ### 📱 **Android (Recommended: Termux)** **Installation in Termux:** ```bash # Install Termux from F-Droid (not Play Store) # In Termux: pkg update && pkg upgrade pkg install python python-pip git pip install --upgrade pip # Clone and install FSS-Mini-RAG git clone https://github.com/your-repo/fss-mini-rag cd fss-mini-rag pip install -r requirements.txt # Quick start python -m mini_rag index /storage/emulated/0/Documents/myproject python -m mini_rag search /storage/emulated/0/Documents/myproject "your query" ``` **Android-optimized config:** ```yaml # config-android.yaml embedding: preferred_method: hash # No heavy models needed chunking: max_size: 800 # Small chunks for mobile files: min_file_size: 20 # Include more small files llm: enable_synthesis: false # Text-only for speed ``` **What works on Android:** - ✅ Full text search and indexing - ✅ Terminal interface (`rag-tui`) - ✅ Project indexing from phone storage - ✅ Search your phone's code projects - ❌ Heavy AI models (use cloud providers instead) **Android use cases:** - Search your mobile development projects - Index documentation on your phone - Quick code reference while traveling - Offline search of downloaded repositories ### 🍎 **iOS (Limited but Possible)** **Option 1: a-Shell (Free)** ```bash # Install a-Shell from App Store # In a-Shell: pip install requests pathlib # Limited installation (core features only) # Files must be in app sandbox ``` **Option 2: iSH (Alpine Linux)** ```bash # Install iSH from App Store # In iSH terminal: apk add python3 py3-pip git pip install -r requirements-light.txt # Basic functionality only ``` **iOS limitations:** - Sandbox restricts file access - No full AI model support - Terminal interface only - Limited to app-accessible files ## Specialized Deployment Scenarios ### 🐳 **Docker Deployment** **For any platform with Docker:** ```dockerfile # Dockerfile FROM python:3.11-slim WORKDIR /app COPY . . RUN pip install -r requirements.txt # Expose ports for server mode EXPOSE 7777 # Default to TUI interface CMD ["python", "-m", "mini_rag.cli"] ``` **Usage:** ```bash # Build and run docker build -t fss-mini-rag . docker run -it -v $(pwd)/projects:/projects fss-mini-rag # Server mode for web access docker run -p 7777:7777 fss-mini-rag python -m mini_rag server ``` ### ☁️ **Cloud Deployment** **AWS/GCP/Azure VM:** - Same as Linux installation - Can serve multiple users - Perfect for team environments **GitHub Codespaces:** ```bash # Works in any Codespace ./install_mini_rag.sh # Perfect for searching your workspace ``` **Replit/CodeSandbox:** - Limited by platform restrictions - Basic functionality available ### 🏠 **Home Lab Integration** **Home Assistant Add-on:** - Package as Home Assistant add-on - Search home automation configs - Voice integration possible **NAS Integration:** - Install on Synology/QNAP - Search all stored documents - Family code documentation **Router with USB:** - Install on OpenWrt routers with USB storage - Search network documentation - Configuration management ## Configuration by Use Case ### 🪶 **Ultra-Lightweight (Old hardware, mobile)** ```yaml # Minimal resource usage embedding: preferred_method: hash chunking: max_size: 800 strategy: fixed llm: enable_synthesis: false ``` ### ⚖️ **Balanced (Raspberry Pi, older laptops)** ```yaml # Good performance with AI features embedding: preferred_method: ollama ollama_model: nomic-embed-text llm: synthesis_model: qwen3:0.6b context_window: 4096 ``` ### 🚀 **Performance (Modern hardware)** ```yaml # Full features and performance embedding: preferred_method: ollama ollama_model: nomic-embed-text llm: synthesis_model: qwen3:1.7b context_window: 16384 enable_thinking: true ``` ### ☁️ **Cloud-Hybrid (Mobile + Cloud AI)** ```yaml # Local search, cloud intelligence embedding: preferred_method: hash llm: provider: openai api_key: your_api_key synthesis_model: gpt-4 ``` ## Troubleshooting by Platform ### **Raspberry Pi Issues** - **Out of memory**: Reduce context window, use smaller models - **Slow indexing**: Use hash-based embeddings - **Model download fails**: Check internet, use smaller models ### **Android/Termux Issues** - **Permission denied**: Use `termux-setup-storage` - **Package install fails**: Update packages first - **Can't access files**: Use `/storage/emulated/0/` paths ### **iOS Issues** - **Limited functionality**: Expected due to iOS restrictions - **Can't install packages**: Use lighter requirements file - **File access denied**: Files must be in app sandbox ### **Edge Device Issues** - **ARM compatibility**: Ensure using ARM64 Python packages - **Limited RAM**: Use hash embeddings, reduce chunk sizes - **No internet**: Skip AI model downloads, use text-only ## Advanced Edge Deployments ### **IoT Integration** - Index sensor logs and configurations - Search device documentation - Troubleshoot IoT deployments ### **Offline Development** - Complete development environment on edge device - No internet required after setup - Perfect for remote locations ### **Educational Use** - Raspberry Pi computer labs - Student project search - Coding bootcamp environments ### **Enterprise Edge** - Factory floor documentation search - Field service technical reference - Remote site troubleshooting --- ## Quick Start by Platform ### Desktop Users ```bash # Linux/macOS ./install_mini_rag.sh # Windows install_windows.bat ``` ### Edge/Mobile Users ```bash # Raspberry Pi ./install_mini_rag.sh # Android (Termux) pkg install python git && pip install -r requirements.txt # Any Docker platform docker run -it fss-mini-rag ``` **💡 Pro tip**: Start with your current platform, then expand to edge devices as needed. The system scales from smartphones to servers seamlessly!